Abschluss- & Projektarbeiten

Projekt- oder Abschlussarbeit gesucht? Wir unterstützen Sie gerne dabei, Ihr Studium mit aktuellen Forschungsarbeiten abzurunden.

Digitale Planung und Engineering von Automatisierungssystemen

Industrierobotik und Mensch-Roboter-Kollaboration

Aufbau eines Systems zum automatisierten Lösen eines Puzzles mittels Cobot und klassischer Objekterkennung.

Name Kontakt
Christian Hölzer Christian Hölzer
M.Sc.

Machine Learning und Künstliche Intelligenz

Prozesssteuerung und Regelstrategien

Ziel der hier angebotenen Abschlussarbeit ist es, mittels CFD einzelne Betriebszustände für ein Membranventil zu simulieren. Hierfür ist eine Ableitung der Innengeometrie des Ventils notwendig. Diese wird als Grundlage für die Erzeugung der unterschiedlichen Berechnungsgitter dient. Zusätzlich ist die Wahl eines geeigneten Solvers erforderlich.

Die Simulationen sollen mit einem geeigneten CFD-Tool (OpenFoam) durchgeführt werden.

Name Kontakt
Johannes Göhring Johannes Göhring
M.Sc.

Ziel der hier angebotenen Abschlussarbeit ist es, mittels CFD einzelne Betriebszustände für ein Schrägsitzventil zu simulieren. Hierfür ist eine Ableitung der Innengeometrie des Ventils notwendig. Diese wird als Grundlage für die Erzeugung der unterschiedlichen Berechnungsgitter dient. Zusätzlich ist die Wahl eines geeigneten Solvers erforderlich.

Die Simulationen sollen mit einem geeigneten CFD-Tool (OpenFoam) durchgeführt werden.

Name Kontakt
Johannes Göhring Johannes Göhring
M.Sc.

Hilfswissenschaftliche Stellenangebote

Für die Mitarbeit im Schwerpunkt Automatisierungstechnik am Forschungsprojekt SMEVIVA suchen wir zum frühestmöglichen Zeitpunkt eine Studentische Hilfskraft (w/m/d) am Standort Nürnberg.

Umfang: 10 Std./Woche

Name Kontakt
Johannes Göhring Johannes Göhring
M.Sc.

Lehrveranstaltungen

Inhalte des Seminaristischen Unterrichts

Die neue Methode der virtuellen Inbetriebnahme (VIBN) ermöglicht es mithilfe eines Modells einer automatisierten Anlage oder eines automatisierten Prozesses SPS-Software frühzeitig zu testen. Jedoch sind viele weitere Nutzungen möglich.

Lernziele

  • Kenntnisse über die Einsatzmöglichkeiten der virtuellen Inbetriebnahme (VIBN)
  • Beurteilen verschiedener Softwarekonzepte und besondere Anforderungen an die Modellierungssoftware
  • Fähigkeit zur Durchführung einer VIBN
  • Anwenden von domänenübergreifendem Fachwissen

Termine

Findet nur im Wintersemester statt.

Dozent

Michael Dietz Michael Dietz
M.Sc.

Inhalte der Vorlesung

Im Rahmen der Übung zur Vorlesung Ingenieurinformatik I werden anhand von Programmierbeispielen die grundlegenden Techniken für die objektorientierte Programmierung vertieft. Die Themengebiete reichen von einfachen Verzweigungen und Mehrfachentscheidungen bis hin zu der Manipulation von Dateien. Umsetzung erfolgt dabei in C/C++.

Lernziele

  • Kenntnisse über den grundlegenden Aufbau von C++ Programmen
  • Analyse von programmiertechnischen Problemstellungen
  • Planung der code-technischen Umsetzung für Problemlösungen
  • Umgang mit der Integrierten Entwicklungsumgebung Code::Blocks
  • Aufstellen von Bedingungen für Verzweigungen
  • Einsatz von Schleifen und Arrays
  • Manipulation von Dateien
  • Umrechnung zwischen verschiedenen Zahlensystemen

 

Termine

Sommer- und Wintersemester

Unterlagen

V:\Fak_MBVS\Lehre\Bachelor_Maschinenbau\Ingenieurinformatik\Ingenieurinformatik1\Deuerlein

Lehrbeauftragter

Christian Deuerlein Christian Deuerlein
M.Sc.

Inhalte der Übung:

Technische Darstellungslehre, Technische Zeichnungen, weitere Bestandteile technischer Dokumentationen, Normung, Grundlagen des Austauschbaus, Gestaltung von technischen Gegenständen Bearbeitung einer Konstruktionsaufgabe, Anfertigung von Produktmodellen und deren Dokumentation, Auslegung und Gestaltung von Maschinen bzw. deren Baugruppen, Kommunikation und Präsentation von Arbeitsergebnissen.

Lernziele:

  • Kenntnisse in der technischen Produktdokumentation. 
  • Kenntnis des ISO-GPS-Systems 
  • Fertigkeiten in konventionellen Methoden der Produktdokumentation und in CAD-gestützten Arbeitsweisen. 
  • Fertigkeit, Kenntnisse aus den technischen sowie den mathematisch- naturwissenschaftlichen Grundlagenmodule bei der Entwicklung von Produkten anzuwenden. 
  • Fähigkeit, im Team konstruktive Lösungen zu erarbeiten, zu kommunizieren und zu präsentieren.
  • Fähigkeit zur Erstellung von Einzelteilen mittels CAD-System als Volumenmodell und zum strukturierten Aufbau von Baugruppen. 
  • Fähigkeit zur Ableitung von funktions- und fertigungsgerechten Teilezeichnungen aus CAD-Systemen.

Literaturempfehlung:

  • Labisch/Weber: Technisches Zeichnen: selbstständig lernen und effektiv üben; Wiesbaden, Springer
  • Vieweg Kurz/Wittel, Böttcher/Forberg: Technisches Zeichnen : Grundlagen, Normung, Übungen und Projektaufgaben; Wiesbaden, Springer 
  • Fachmedien Fischer et al: Tabellenbuch Metall. - Europa-Fachbuchreihe für Metallberufe; Haan-Gruiten, Europa-Lehrmittel - Europa-Nr. 1060X

 

Lehrbeauftragte

Dominic Häuslein Dominic Häuslein
M.Sc.

Inhalte des Praktikums

Im Rahmen dieses Praktikums werden sukzessive Versuche zu gängigen Themengebieten der Regelungstechnik durchgeführt, die auftretenden Phänomene erklärt und so die Methoden und deren Anwendung gefestigt. Sie dienen als intensive Vorbereitung auf die Klausur und zum tieferen Verständnis des Stoffes.

Lernziele

  • Zusammenhang zwischen Zeit- und Frequenzbereich
  • Systemeigenschaften aus unterschiedlichen Darstellungsformen ablesen und interpretieren
  • Identifikation und Stabilität von Systemen
  • Führungs- und Störübertragungsfunktion
  • Anwendung und Kennenlernen von P-, I-, PI- und PID-Reglern sowie von Kompensationsreglern mit entsprechenden Einstellregeln
  • Wurzelorts- und Nyquistortskurve, Bodediagramm
  • Amplituden- und Phasenreserve
  • Kennenlernen von und Umgang mit Stellsignalbegrenzungen
  • Kaskadenregelung

Termine

Sommersemester

Literaturempfehlung

Föllinger, O.: Regelungstechnik – Einführung in die Methoden und ihre Anwendung, 10. Auflage, Hüthig-Verlag, 2008.

Lehrbeauftragter

Name Kontakt
Florian Goppelt-Schneider Florian Goppelt-Schneider
M.Eng.

Inhalte des Praktikums

Im Rahmen dieses Praktikums wird zum einen der Umgang mit dem Simulationsprogramm BORIS nähergebracht, in einigen Praktikumseinheiten angewendet und unter anderem zur Simulation von Regelstrecken und Identifikation von Reglerparametern verwendet. Zum anderen werden die wichtigsten Reglertypen (p, PI, PD, PID) behandelt und der Einfluss der Reglerparameter auf das Regelkreisverhalten bei einem Führungs- oder Störsprung untersucht. Abschließend erfolgt eine kleine Einführung in Steuerungstechnik, bei der eine SPS über Funktionspläne und Anweisungslisten programmiert wird.

Lernziele

  • Analyse einer unbekannten Regelstrecke im stationären Endwert
  • Lineare und nichtlineare Kennlinien
  • Arbeitspunkt einer Regelstrecke
  • Stationäre Kennwerte der Regelstrecke und von Regelstreckenteilen
  • Ermittlung von Regelstreckenkennwerten mit und ohne Ausgleich
  • Nachbildung von Regelstrecken mit BORIS
  • Unterscheidung zwischen Störungs- und Führungsverhalten
  • Reglertypen P, PI, PD, PID
  • Einfluss der Reglerparameter auf das Regelkreisverhalten
  • Beurteilung und Verbesserung der Regelgüte
  • Umsetzung von physikalischen Gleichungen in einem Blockschaltbild
  • Abbildung des Blockschaltbildes in ein Simulationsprogramm
  • Auswahl und Einstellen eines passenden Reglers
  • Aufstellen einer Zuordnungsliste Prozess ⇔ SPS
  • Erstellen von Funktionsplänen und Anweisungslisten

Termine

07.05., 14.05., 28.05., 25.06., 01.07., 08.07., + Block Ende September

Literaturempfehlung

Skript Regelungs- und Steuerungstechnik (Prof. Schmidt-Vollus)

Unterlagen

 

elearning.ohmportal.de/mod/folder/view.php

 

Lehrbeauftragter

Name Kontakt
Christian Bergner Christian Bergner
M.Eng.

Inhalte der Übung

Im Rahmen dieser freiwilligen Übungsstunde werden Aufgaben zu den beiden großen Themengebieten „Differentialgleichungssysteme“ und „Stochastik“ gerechnet, erklärt und so verfestigt. Sie dienen als intensive Vorbereitung auf die Klausur und zum tieferen Verständnis des Stoffes.

Lernziele

  • Lösen von linearen Differentialgleichungssystemen
  • Linearisieren nichtlinearer Systeme
  • Beurteilung der Stabilität von Systemen
  • Anwenden stochastischer Methoden
  • Umgang mit Ereignissen, Zufallsvariablen und Wahrscheinlichkeiten
  • Rechnen mit und Anwenden von Wahrscheinlichkeitsverteilungen
  • Spezielle Verteilungsfunktionen und Näherungsmethoden

Termine

Sommer- und Wintersemester

Literaturempfehlungen

  • Papula, L: Mathematik für Ingenieure und Naturwissenschaftler Band 1 – 3, Berlin: Springer.
  • Papula, L: Mathematische Formelsammlung, Berlin: Springer.

Lehrbeauftragter

Name Kontakt
Florian Goppelt-Schneider Florian Goppelt-Schneider
M.Eng.