Welcome at the website of the CP4ST research group

The Computational Physics for Sensor Technologies (CP4ST) research group has been established in 2023 with the goal to provide applied research in the field of sensor technologies. We apply multi-physical finite-element (FEM) simulations and accompanying analytical modelling to solve various kinds of questions that arise in the innovation process of sensor technologies and beyond.

We are open for any kind of intriguing physics, with an initial focus on ultrasonics, especially for flow sensing. This ranges from "simple" piezo modelling and transducer designing to novel approaches such as using guided waves for flow metering. Other activities range from fundamental physics (anisotropic fluid dynamics) to applied building physics (heat flow simulation of outdoor pools).

We are happy to work closely with industry partners, bringing the physics point of view to engineering applications. If you are interested, please do not hesitate to get in touch to discuss further.

Research

Sensitivity Analysis of Piezoelectric Material Parameters

For finite-element simulations of piezoelectric devices, material parameters are crucial for accurate results. Several methods have been developed to determine these parameters by means of specific test specimens. In general, the test specimen need to be highly sensitive to all material parameters, making prior knowledge of these sensitivities very helpful. Sobol indices are a common way to quantify this sensitivity. In our research, we examine the applicability of the method of Sobol to the non-smooth, resonant behavior of a vibrational eigenmode of a piezoelectric element.

 

F. Anderl and M. Mayle, Sensitivity analysis of piezoelectric material parameters using Sobol indices, tm - Technisches Messen 92, 234 (2025),  https://www.degruyterbrill.com/document/doi/10.1515/teme-2024-0116/html

CO2freibad - Optimierung des Energiehaushalts eines Außenschwimmbeckens

Projektpartner: 1. FCN Schwimmen e.V., NürnbergBad

 

Vor dem Hintergrund der Klimaschutz- und Nachhaltigkeitsaspekte ist es geboten, den Betrieb von Schwimmbädern klimaneutral zu gestalten. Bisherige Vorarbeiten zeigen, dass angepasste Strategien unter Nutzung gesamtsystemischer Aspekte notwendig sind, um bei minimierten Investitions- und Betriebskosten eine auf die jeweilige Sportstätte optimierte Systemauslegung zu erhalten. Entscheidend hierfür ist es, den Energiehaushalt des Schwimmbeckens physikalisch detailliert und in Übereinstimmung mit tatsächlichen Energieverbrauchsdaten zu modellieren. Eine betriebsfertige Lösung hierfür existiert nicht, daher sollen im Projekt neue, innovative Ansätze erarbeitet werden, z.B. mit Hilfe von Detailsimulationen auf Finite-Elemente Basis oder Machine-Learning/KI Strategien. Diese werden mittels im Rahmen des Projekts zu erfassenden Energieverbrauchs- und Sensordaten realer Schwimmanlagen trainiert bzw. validiert. Ein weiterer Baustein ist die projektseitige, experimentelle Vermessung der betriebszustandsabhängigen Leistungszahl geeigneter Wärmepumpen als Wärmequelle. Zusammengeführt werden die Ergebnisse in der Gesamtsystemauslegung der Wärmetechnik eines Schwimmbadbetriebs und einer optimierten Betriebsstrategie für die Erreichung der Klimaneutralität.

Anisotropic CFD Simulations

Partners: JILA (University of Colorado and NIST) and ITAMP (Harvard & Smithsonian)

 

In a recent theoretical effort, a hydrodynamic model of ultracold, but not yet quantum condensed, dipolar gases has been derived by our project partners [1,2]. Within this model, the dipolar scattering results in an anisotropic viscosity tensor. Effects of the anisotropy have been predicted to be observable in the weltering motion, i.e., the collective oscillations of a dipolar Fermi gas [3], as well as in its acoustic behavior [1].

In this project, we approach dipolar fluids from a computational fluid dynamics (CFD) perspective. To this end, previously derived analytic expressions of the anisotropic viscosity tensor are implemented in COMSOL Multiphysics®. This allows us to investigate a whole spectrum of fluid flow situations but now including the inherent anisotropy of dipolar scattering. 

 

[1] R. R. W. Wang and J. L. Bohn, Anisotropic acoustics in dipolar Fermi gases, Phys. Rev. A 107, 033321 (2023).

[2] R. R. W. Wang and J. L. Bohn, Thermoviscous hydrodynamics in nondegenerate dipolar Bose gases, Phys. Rev. A 106, 053307 (2022).

[3] R. R. W. Wang and J. L. Bohn, Viscous dynamics of a quenched trapped dipolar Fermi gas, Phys. Rev. A 108, 013322 (2023).

Open Positions

We are looking for enthusiastic students!

 

You are interested in the application of FEM simulation tools as well as analytical modelling to find solutions in our research fields? Then do not hesitate and get in touch with us!

We can offer various topics for:

  • Projects (Anwendungsprojekte/Projektarbeiten),
  • Bachelor theses,
  • Master theses,

…and depending on funding availability also PhD theses (within the framework of the Center for Physical and Biomedical Engineering - CPaB).

People

Mayle, Michael - Head of research group