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ELSYS Note

The role of the flux per pole
This note explores the role of the flux per pole in electrical ma-
chines. By examining the spatial and temporal behavior of the
air-gap flux density, and applying Faraday’s law, the connection
between flux linkage and induced voltage is established – high-
lighting how machine design impacts terminal voltage and per-
formance.

Design Overview
When designing electrical ma-
chines, one of the primary con-
siderations is the terminal voltage,
often expressed in its simplest form
as

Urms = ω · ψrms

This compact equation relates the
induced voltage U to the electrical
angular velocity ω and the flux link-
age ψ. While this relationship ap-
pears straightforward, understand-
ing the full theory behind it requires
a deep integration of electromagnet-
ics, geometry, and dynamic system
behavior.

Rotating magnetic field
In three-phase electrical machines,
the first foundational step is to cre-
ate a rotating magnetic field in the
air-gap. This is achieved by arrang-
ing three stator windings mechani-
cally spaced 120◦ apart around the
air-gap periphery. To generate a
rotating flux, these windings must
also be supplied with three-phase
currents that are electrically phase-
shifted by 120◦ from one another.
The spatial and temporal phase
shifts together result in a rotating
magnetic field – a sinusoidal wave
that travels uniformly around the
stator’s inner circumference.
This rotating field is the fundamen-
tal mechanism behind torque gener-

ation and voltage induction in syn-
chronous and induction machines.

Flux density wave
The resulting air-gap flux density
in a three-phase machine takes the
form of a traveling wave, given by
the expression:

B(x, t) = B̂ · cos
(
π

τp
· x− ωt

)
This wave represents a rotating si-
nusoidal distribution of the mag-
netic flux density around the air-
gap. For a given magnetomotive
force (mmf), the amplitude B̂ re-
mains constant, indicating that the
flux density wave maintains a fixed
shape and amplitude as it rotates at
angular velocity ω.
Fig. 1 illustrates this rotating field
at three different time instants,
showing how the peak of the flux
wave travels around the air-gap –
a key feature in electromagnetic
torque production and voltage gen-
eration.
Due to the spatial symmetry of the
flux density wave, it is sufficient
to analyze the machine behavior
over a single wavelength, or more
specifically, over an interval of twice
the pole pitch, i.e. x ∈ [−τp, τp].
This interval captures the behavior
across one full electrical period of
the air-gap field.
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Fig. 1: Rotating field

Flux Linkage
To analyze the flux linkage with a
coil, we consider a full-pitch coil. A
full-pitch coil spans exactly one pole
pitch. In this configuration, the coil
sides are located at x = − τp

2 and
x = τp

2 . These positions form the
integration boundaries when calcu-
lating the flux that links with the
coil. The integral of the flux den-
sity B(x, t) over this spatial interval
defines the instantaneous flux link-
age ψ(t), which in turn governs the
induced voltage in the coil.

ELSYS Note
m Homepage B Author: J.J. Germishuizen Page 1

https://www.th-nuernberg.de/einrichtungen-gesamt/in-institute/institut-fuer-leistungselektronische-systeme-elsys/
mailto:johannes.germishuizen@th-nuernberg.de


April 2025, No 20

0 T
4

T
2

3T
4

T

−Φ̂

0

Φ̂
t0 t1

t2

t / s

Φ
(t

)/
V

·s

−Û
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Fig. 2: Flux per pole Φ(t) over time

The maximum flux linkage per coil
occurs when the zero-crossings of
the flux density wave align precisely
with the coil sides. In this case, the
positive halve of the sinusoidal flux
density is symmetrically distributed
between the two sides (see figure),
maximizing the net flux threading
the coil area. This configuration is
characteristic of a full-pitch coil, op-
timally placed within one pole pair.

Flux per pole
To compute the flux per pole, one
must perform a volume integral of
the flux density over the pole pitch
and the axial length of the machine.
Since B varies only along the air-
gap periphery (the x-direction), and
is uniform along the axial length lFe,
the volume integral simplifies to a
product of the axial length and a
one-dimensional integral:

Φ = lFe ·
∫ τp/2

−τp/2
B(x) · dx

This simplification highlights how
the air-gap flux density distribution
directly determines the total mag-
netic flux per pole.
To compute the flux per pole Φ, we
integrate the flux density over the
pole pitch. Assuming the air-gap
flux density is sinusoidal, the follow-
ing substitution simplifies the inte-
gral:

u = πx

τp
and dx = τp

π
du

With this substitution, the integra-
tion limits transform as follows:

x ∈
[
−τp

2 ,
τp

2

]
→ u ∈

[
−π

2 ,
π

2

]
Thus, the flux per pole at t = 0 be-
comes:

Φ0 = lFe ·
∫ τp/2

−τp/2
B̂ cos

(
πx

τp

)
dx

= lFe · B̂ · τp

π

∫ π/2

−π/2
cos(u) du

= lFe · B̂ · τp

π
· 2

= 2
π

· B̂ · τp · lFe

This expression corresponds to the
maximum flux per pole. Recall that
0,636 ≈ 2

π , which also represents
the average area under a normalized
sinusoidal curve over half a period.
As time progresses (see Fig. 1), the
sinusoidal flux density wave rotates,
and the resulting flux linkage be-
comes time-dependent. The inte-
grated flux varies as a cosine func-
tion, as illustrated in Fig. 2:

Φ(t) = Φ̂ · cos(ωt), with Φ̂ = Φ0

To compute the induced voltage, we
apply Faraday’s law, which states
that the voltage is proportional to
the time derivative of the flux link-
age. Differentiation of Φ(t) requires
the chain rule. However, it is im-
portant to note that the maximum
flux per pole, Φ̂, is constant in time,

and therefore its derivative is zero.
Applying the chain rule gives:

dΦ(t)
dt

= −Φ̂ · ω · sin(ωt)

Voltage Equation
Finally, accounting for the winding
factor kw and the number of series
turns per phase Nph leads directly
to the familiar RMS voltage equa-
tion:

Urms = ω · kw ·Nph · Φ̂√
2

= ω · kw ·Nph · 2
π

· B̂√
2

· τp · lFe

= ω · ψ̂√
2

= Û√
2

Summary
This note explains how the termi-
nal voltage in electrical machines
originates from a time-varying mag-
netic flux linkage. Starting from
the spatial distribution of the air-
gap flux density, we integrate over
the pole pitch to find the maxi-
mum flux per pole. As the flux
density rotates, the flux linkage be-
comes time-dependent, following a
sinusoidal pattern. Applying Fara-
day’s law reveals that the voltage is
also sinusoidal. Finally, considering
the winding factor and number of
turns connects the physical machine
design to its electrical output.
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