Studienplan

Bachelor-Studiengang Verfahrenstechnik, SPO 2011

Technische Hochschule Nürnberg Georg Simon Ohm gültig ab **Sommersemester 2025** für Studierende, für die Anlage 2 der SPO gültig ist (PO20112).

1. Studienabschnitt

	Modulname	LP	1. Sem.	2. Sem.		Prüfung		
	Wodumame	LF	SWS	LP	SWS	LP	Truiting	
1600	Ingenieurmathematik I	7	6	7			entspr. SPO	
1621	Chemiepraktikum	2	2Pr	2			entspr. SPO	
1630 + 1631	Technische Mechanik	5	3 + 2Ü	5			entspr. SPO	
1690	Verfahrenstechnische Apparate und Anlagen	5	4	5			entspr. SPO	
1670	Elektrotechnik	4	2 + 1Ü	4			entspr. SPO	
1680	Werkstoffkunde	5	4	5			entspr. SPO*	
1726	Computerunterstützte Berechnungs- methoden in der Verfahrenstechnik	5	4	5			entspr. SPO	
1610	Ingenieurmathematik II	7			6	7	entspr. SPO	
1640 + 1641	Festigkeitslehre	5			3 + 2Ü	5	entspr. SPO	
1620 + 1622	Allgemeine und Anorganische Chemie	4			4 + 1S	4	entspr. SPO	
1650 + 1651	Fluidmechanik I	5			3 + 2Ü	5	entspr. SPO	
1660	Grundlagen der Thermodynamik	6			4 + 1Ü	6	entspr. SPO	
	Summe		28	33	26	27		

^{*)} Das Fach Werkstoffkunde gliedert sich in zwei Teile, welche jeweils einzeln schriftlich geprüft werden. So ergeben sich zwei schrP 45. Die Notengebung erfolgt aus dem Gesamtergebnis beider Teile.

2. Studienabschnitt

	Modulname		Modulname		Modulname		Modulname		Modulname LP		3. Sem. LP		4. Sem.		5. Sem.		6. Sem.		7. Sem.		Prüfung
			SWS	LP	SWS	LP	SWS	LP	SWS	LP	SWS	LP									
5800	Ingenieurmathematik III	5	4	5									entspr. SPO								
5810	Grundlagen der Wärmeübertragung	5	3 + 2Ü	5									entspr. SPO								
5846	Einführung in CAD	3	3	3									entspr. SPO								
5868	Strömungsmaschinen	5	4	5									entspr. SPO								
5870 + 5871	Messtechnik	5	3 + 2Pr	5									entspr. SPO								
	Mechanische Verfahrenstechnik	10											entspr. SPO								
5820 +	Fluidmechanik II		2 + 1Ü	3									entspr. SPO								
5825 + 5826	MVT I				4 + 2Pr	7							entspr. SPO								
	Thermische Verfahrenstechnik	10											entspr. SPO								
	Thermodynamik der Gemische		2 + 1Ü	3									entspr. SPO								
5830 + 5831	TVT I				4 + 2Pr	7							entspr. SPO								
5860 + 5865	Apparatekonstruktion	5			2 + 2Ü	5							entspr. SPO								
5875 + 5876	Regelungstechnik	5			3 + 2Pr	5							entspr. SPO								
5805	Organische Chemie und Kunststoffe	5			4	5							entspr. SPO								
5890	Englisch	2			2	2							entspr. SPO								
5815 + 5816	Angewandte Wärme- und Stoffübertragung	5					3 + 2Pr	5					entspr. SPO								
5836 + 5837	Prozesssimulation	5					4	5					entspr. SPO								
5841 + 5842	Chemische Reaktionstechnik	5					2 + 2Ü + 2Pr	5					entspr. SPO								
5880	Technisch-wissenschaftliches Programmieren	5					2 + 2Ü	5					entsprechend Semesterfestlegung								
5885	Projektkurs	5					4	5					entspr. SPO								
3300	Recht	2							2	2			entspr. SPO								
3400	Process Flow Diagrams - Fließbilder	2							3	2			entspr. SPO								
3100	Praxissemester	24							20 Wo	24											
3200	Praxisseminar	2									1	2	entspr. SPO								
5850	Planung und Kalkulation verfahrenstechnischer Anlagen	5									6	5	entspr. SPO								
7000	Bachelorarbeit	12									360 h	12									
7000	Bachelorseminar	3									90 h	3									
	Studienrichtung (AVT/BVT/CAPE)	15					6/4/4	5			8/10/10	10	siehe Seite 3								
	Summe (AVT/BVT/CAPE)		27	29	27	31	29/27/27	30	5	28	15/17/17	32									

Abkürzungen: SWS ... Semesterwochenstunden

SPO ... Studien- und Prüfungsordnung

Ü ... Übungen Pr ... Praktikum h ... Stunden

S ... Seminar

LP ... Leistungspunkte

Wo ... Wochen

Module der Studienrichtung "Allgemeine Verfahrenstechnik AVT"

	Modulname	LP	5. Sei	5. Sem.		6. Sem.		m.	Prüfung	
			sws	LP			SWS	LP	Fraiding	
6010	Energie- und Umweltverfahrenstechnik	5	6	5					entspr. SPO	
6020 + 6021	Mechanische Verfahrenstechnik II	5					2+2Pr	5	entspr. SPO	
6030 + 6031	Thermische Verfahrenstechnik II	5					2+2Pr	5	entspr. SPO	

Module der Studienrichtung "Bioverfahrenstechnik BVT"

	Modulname	LP	5. Sei	5. Sem.		6. Sem.		m.	Prüfung
	Modumanie		sws	LP			SWS	LP	Fraiding
6120 + 6121	Biochemie	5	3+1Pr	5					entspr. SPO
6110 + 6111	Grundlagen der Mikrobiologie	5					3+1Pr	5	entspr. SPO
6130 + 6131	Bioverfahrenstechnik	5					4+2Pr	5	entspr. SPO

Module der Studienrichtung "Computerunterstützte Verfahrenstechnik CAPE"

	Modulname	LP	5. Se	5. Sem.		6. Sem.		m.	Prüfung
Woddiname			sws	LP			SWS	LP	Fraiding
6220	Numerische Strömungsmechanik	5	4	5					entsprechend Semesterfestlegung
6210	Finite Elemente Methode	5					4	5	entsprechend Semesterfestlegung
6230 + 6231	Prozesssystemtechnik	5					4+2Pr	5	entspr. SPO

Semesterfestlegung, gültig ab Sommersemester 2025:

Prüfungsformen in bestimmten Modulen:

5880 Technisch-wissenschaftliches Programmieren RechP 90

6010 Energie- und Umweltverfahrenstechnik schrP 120

6210 Finite Elemente Methode StA

6220 Numerische Strömungsmechanik RechP 120 + mdlP 30

Ausgestaltung der Portfolioprüfung im Fach Nr. 5890 Englisch im Sommersemester:

6 Teilaufgaben (alle 2 Wochen): Bearbeitung via Moodle

Gewichtung der Teilaspekte wie folgt:

Leseverständnis- und Grammatikübung (Gewicht 15%)

Schriftliche Textverfassung (Gewicht 15%)

Hörverständnisaufgabe (Gewicht 15%)

Präsentation (Gewicht 15%)

Leseverständnis- und Grammatikübung (Gewicht 15%)

Schriftliche Textverfassung (Gewicht 25%)

Ausgestaltung der Prüfung im Fach Nr. 5890 Englisch im Wintersemester:

schrP 90

Voraussetzungen für das Bestehen der Praktika

Für jedes einzelne Praktikum besteht die Praktikumsleistung aus bis zu acht Dokumentationen von Praktikumsaufgaben (Praktikumsberichten) und/oder bis zu acht Kolloquien und/oder bis zu acht schriftlichen Testaten. Es besteht verpflichtende Teilnahme an allen angebotenen Praktikumsversuchen inklusive Versuchsdurchführung und Protokollierung der Messdaten. Alle Dokumentationen von Praktikumsaufgaben (Praktikumsberichte) "mit Erfolg" und alle Kolloquien "mit Erfolg" und alle schriftlichen Testate "mit Erfolg" ist Voraussetzung für das Bestehen des Praktikums.

Die detaillierten Festlegungen für im Sommersemester stattfindende Praktika sind:

- 5826 Praktikum Mechanische Verfahrenstechnik
 - Bestehen des Eingangskolloquiums in Form von Multiple-Choice Test via Moodle für jeden Versuch. Anwesenheitspflicht bei allen vier Versuchen. Erstellung eines Praktikumsberichtes/Dokumentation pro Studierendem. Abschlusskolloquium in Form einer Präsentation eines vom geschriebenen Berichtes abweichenden Versuches mit einer Dauer von 10 Minuten, sowie anschließender Diskussion der Ergebnisse ebenfalls ca. 10 Minuten.
- Praktikum Thermische Verfahrenstechnik Eine eigenständig verfasste Dokumentation (vollständige Versuchsauswertung zu einem Praktikumsversuch im Sinne eines technischen Berichts) und erfolgreiche Teilnahme am Eingangskolloguium von 15 Minuten Dauer.
- 5842 Praktikum Chemische Reaktionstechnik

Verpflichtende Teilnahme an dem praktikumsbegleitenden Seminar, vier Dokumentationen von Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen, und pro Praktikumsgruppe ein Abschlusskolloquium von 30 Minuten Dauer

5876 Praktikum Regelungstechnik

Vier Dokumentationen von Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen, und pro Person ein Kolloquium von 15 Minuten Dauer

Die detaillierten Festlegungen für im Wintersemester stattfindende Praktika sind:

1621 Chemiepraktikum Winter

Fünf Dokumentationen von Praktikumsaufgaben (eine je Praktikumstag für alle an diesem Tag durchgeführten Versuche), vollständig durch jeden einzelnen Teilnehmenden der jeweiligen Praktikumsgruppe zu erbringen.

5816 Praktikum Angewandte Wärme- und Stoffübertragung

Das Praktikum besteht aus 8 Praktikumsversuchen. Die Praktikumsleistung besteht aus folgenden Punkten: Eingangskolloquium mit 10 Minuten Dauer je Teilnehmendem vor dem jeweiligen Versuch, Dokumentation von Praktikumsaufgaben je Praktikumsversuch (Praktikumsbericht), anteilig durch die Teilnehmenden der jeweiligen Praktikumsgruppe zu erbringen, jeweils federführend eine Dokumentation von Praktikumsaufgaben pro Teilnehmendem, Abschlusskolloquium nach allen Versuchen, bestehend aus einer 10-minütigen Präsentation zum Praktikumsversuch von jedem einzelnen Teilnehmenden und einer anschließenden Fachdiskussion. (entsprechend EWT und VT)

5871 Praktikum Messtechnik

Vier Dokumentationen von Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen, und pro Person ein Kolloquium von 15 Minuten Dauer

6021 Praktikum Mechanische Verfahrenstechnik II

Bestehen des Eingangskolloquiums in Form von Multiple-Choice Test via Moodle für jeden Versuch. Anwesenheitspflicht bei allen vier Versuchen. Erstellung eines Praktikumsberichtes/Dokumentation pro Studierendem. Abschlusskolloquium in Form einer Präsentation eines vom geschriebenen Berichtes abweichenden Versuches mit einer Dauer von 10 Minuten, sowie anschließender Diskussion der Ergebnisse ebenfalls ca. 10 Minuten.

6031 Praktikum Thermische Verfahrenstechnik II

Eine eigenständig verfasste Dokumentation (vollständige Versuchsauswertung zu einem Praktikumsversuch im Sinne eines technischen Berichts) und erfolgreiche Teilnahme am Eingangskolloquium von 15 Minuten Dauer.

6231 Praktikum Prozesssystemtechnik

Zwei Dokumentationen der Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen

6111 Praktikum Mikrobiologie (Blockpraktikum in VT 7)

Anwesenheitspflicht

Erfolgreiche Teilnahme am Eingangskolloquium (30 min pro 3er Gruppe)

Eine Dokumentation der Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen. (=1 Bericht zu allen Teilversuchen pro 3er Team)

6121 Praktikum Biochemie (semesterbegleitend in VT 5)

Anwesenheitspflicht

Erfolgreiche Teilnahme am Eingangskolloquium (ca. 15 min pro 3er Team am Versuchstag)

Bei der Versuchsauswertung wird je nach Versuch ein Lernziel-Schwerpunkt gesetzt (z.B. Datenauswertung in Excel, Visualisierung in Graphen, Präsentation/Vortrag, Kurzbericht)

Die Dokumentation des letzten Versuchs ist als vollständige Versuchsauswertung im Sinne eines technischen Berichts anteilig durch die Teilnehmenden zu erbringen. (= 1 Bericht pro 3er Team)

6131 Praktikum BVT (Blockpraktikum in VT 7)

Anwesenheitspflicht

Erfolgreiche Teilnahme am Eingangskolloquium (ca. 15 min pro 3er Gruppe)

Eine Dokumentation (vollständige Versuchsauswertung zu einem Praktikumsversuch im Sinne eines technischen Berichts) der Praktikumsaufgaben pro Praktikumsgruppe, anteilig durch die Teilnehmenden zu erbringen. (= 1 Bericht pro Versuch pro 3er Team; im Blockpraktikum werden 3 Versuche durchgeführt)

Angebotene Studienrichtungen:

Allgemeine Verfahrenstechnik AVT Bioverfahrenstechnik BVT Computerunterstützte Verfahrenstechnik CAPE

Abkürzungen:

schrP 60	schriftliche Prüfung, 60 Minuten Dauer
schrP 90	schriftliche Prüfung, 90 Minuten Dauer
schrP 120	schriftliche Prüfung, 120 Minuten Dauer
mdIP 30	mündliche Prüfung, 30 Minuten Dauer
RechP 90	rechnergestützte Prüfung, 90 Minuten Dauer
RechP 120	rechnergestützte Prüfung, 120 Minuten Dauer