

Modulhandbuch

Bachelorstudiengang Fahrzeugtechnik

Inhaltsverzeichnis

Inhalt

1. Studienziele und Kompetenzprofil	4	4
2. Modulbeschreibungen	1	1
1) Einführung in die Fahrzeugtechnik		
Informatik		
Konstruktion I (Konstruktion I mit CAD I)	1!	5
Werkstoffkunde	1	7
Ingenieurmathematik II	19	9
Technische Mechanik II (Festigkeitslehre Vertiefung)	20	0
Maschinenelemente I		
Technische Thermodynamik	2	2
Projekt aus der Fahrzeugtechnik		
Technische Strömungsmechanik		
Numerische Methoden (Numerische Lösungsverfahren und Einführung in MATLAB)		
Technische Mechanik III (Kinematik und Kinetik)		
Maschinenelemente II		
Fertigungstechnik I (Grundlagen industrieller Fertigung, Spanlose Fertigung, Spanende Fertigung)		
Wärmeübertragung		
Elektrotechnik		
Messtechnik		
Data Science		
Maschinendynamik		
Projekt aus der Fahrzeugtechnik II		
Straßenfahrzeuge		
Elektrische Antriebe (mit Praktikum)		
Regelungs- und Steuerungstechnik (mit Praktikum)		
Praxissemester		
Betreutes Praktikum		=:
Praxisseminar		٠,
Technisches Englisch		
Betriebsführung	4	7 °.
Module der Vertiefungsrichtungen		
Technisches Querschnittswissen (Fachwissenschaftliches Wahlpflichtfach 1 + 2)	Δ.	ت ج و
Allgemeinwissenschaftliches Wahlpflichtfach		
2) Abschlussprojekt	5.	1 K
Anlage (Module der Vertiefungsrichtung)	J.	<u>,</u>
S. Allage (Module der Vertiefungshöhlung)	ع ح	- 등
KolbenmaschinenEnergiespeicherung	J	9 e
Tach piach a Dunamik and Almakik	50	e Pequ
Technische Dynamik und Akustik Fahrzeugantriebstechnik	5	/ po/
Fantzeugantriebstechnik	50	5 <u>~</u>
Fahrzeugelektronik und -software	60	2 2 2 2
Leichtbau Konstruktion		
Schienenfahrzeuge Grundlagen		
Mechatronik mit MATLAB/Simulink-PraktikumFEM-Simulation	6	2 0
FEIVI-SIMUIATION	67	/ <u>[</u>
Grundlagen der Bionik	68	8 ≥
Technical International Project	6	9

Extended Technical International Project......70

Studienziele und Kompetenzprofil

1.1 Studienziel

Der Bachelorstudiengang Fahrzeugtechnik ist ein grundständiger Studiengang und führt nach sieben Semestern Regelstudienzeit zur Berufsbefähigung als Ingenieurin der Fahrzeugtechnik bzw. als Ingenieur der Fahrzeugtechnik.

Ziel ist der Erwerb von Kenntnissen und Fähigkeiten zur selbständigen Anwendung wissenschaftlicher Erkenntnisse und Methoden in der Fahrzeugtechnik. Neben einer breiten Grundlagenausbildung im Bereich des Maschinenbaus während der ersten Fachsemester erwerben die Studierenden mit fortschreitendem Studienfortschritt zunehmend vertiefte Kenntnisse auf dem Gebiet der Fahrzeugtechnik, sodass sie befähigt werden, sich rasch in eines der zahlreichen Anwendungsgebiete der Fahrzeugtechnik wissenschaftlich fundiert einzuarbeiten, ihre Kenntnisse anzuwenden und verantwortlich zu handeln.

Durch die Wahl von Vertiefungsmodulen werden die Grundlagen des Maschinenbaus auf wichtige Arbeitsfelder der Fahrzeugtechnik angewendet und vertieft, eine Spezialisierung ist damit nicht verbunden. 2Neben der Vermittlung von Fachkenntnissen werden Schlüsselqualifikationen wie Lern- und Arbeitstechniken, Team- und Kommunikationsfähigkeit gefördert.

1.2 Durch das Studium zu erreichende Lernergebnisse

Entsprechend den Empfehlungen der "Akkreditierungsagentur für Studiengänge der Ingenieurwissenschaften, der Informatik, der Naturwissenschaften und der Mathematik e.V." (ASIIN) berücksichtigen die Module des Bachelorstudiengangs die folgenden Kategorien:

- Mathematisch-naturwissenschaftliche Grundlagen
- Ingenieurwissenschaftliche Grundlagen
- Ingenieuranwendungen
- Profilbildung, Vertiefung
- Fachübergreifende Lehrinhalte
- Praktische Ausbildung, Bachelorarbeit

Die nachfolgende Zusammenstellung ordnet die einzelnen Module/Teilmodule des Curriculums diesen Kategorien zu und erläutert in diesem Kontext die zu erreichenden Lernergebnisse.

Mathematisch- naturwissenschaftliche Grundlagen:

Aufgabe der Module der mathematisch-naturwissenschaftlichen Grundlagen ist es, die grundlegenden Kenntnisse, Fertigkeiten und Kompetenzen zu vermitteln, die die Studierenden für den Studiengang Maschinenbau benötigen. Dabei wird auf dem Bildungsstand aufgebaut, der durch die Hochschulzugangsberechtigung definiert ist. Dieser wird vertieft und vorbereitend für die ingenieurwissenschaftlichen Grundlagen erweitert. Diese Modulgruppe

bildet überwiegend den ersten Studienabschnitt des Bachelorstudiengangs (1. und 2. Studiensemester), die folgenden Module gehören zu dieser Gruppe:

- Ingenieurmathematik I und II
- Numerische Methoden
- Informatik

Ingenieurwissenschaftliche Grundlagen:

Aufgabe der Module der ingenieurwissenschaftlichen Grundlagen ist es, die breite Basis für die ingenieurwissenschaftlichen Methoden und Verfahren zu schaffen, um die vielfältigen Probleme des Maschinenbaus identifizieren, formulieren und lösen zu können. Dabei wird auf den mathematisch-naturwissenschaftlichen Grundlagen der ersten beiden Semester aufgebaut. Die folgenden Module gehören zu dieser Gruppe:

- Technische Mechanik I, II und II
- Werkstoffkunde
- Elektrotechnik und Elektrische Antriebe
- Technische Thermodynamik
- Wärmeübertragung
- Technische Strömungsmechanik
- Maschinendynamik
- Regelungs- und Steuerungstechnik
- Messtechnik

Ingenieuranwendungen:

Ziele der Module der Ingenieuranwendungen ist es, den Studierenden die Anwendung der Grundlagenkenntnisse auf wichtigen Gebieten des Maschinenbaus zu vermitteln. Den Studierenden werden die Fertigkeiten und Kompetenzen vermittelt, eigenständig die maschinenbaulichen Problemstellungen erkennen und lösen zu können. Diese Modulgruppe ist überwiegend im vierten bis siebten Studiensemester zu finden. Die folgenden Fächer gehören zu dieser Gruppe:

- Maschinenelemente I und II
- Konstruktion / CAD
- Fertigungstechnik I
- Einführung in die Fahrzeugtechnik
- Projekt aus der Fahrzeugtechnik I und II
- Straßenfahrzeuge

Profilbildung, Vertiefung

Aufbauend auf Grundlagen und Ingenieuranwendungen, vermitteln im 6. und 7. Semester die Module der Fahrzeugtechnik vertiefende Kenntnisse und Fertigkeiten auf bedeutenden Berufsfeldern der Fahrzeugtechnik. Den Studierenden werden in den Modulen und Studienprojekten die Kompetenzen vermittelt, Problemstellungen der Fahrzeugtechnik ganzheitlich interdisziplinär zu erkennen und zu bearbeiten.

Zu dieser Kategorie zählen auch die Module

- Technisches Querschnittswissen
- Allgemeinwissenschaftliches Wahlpflichtfach

Diese dienen als Fach- und allgemeinwissenschaftliche Wahlpflichtfächer je nach vorhandenen Fähigkeiten und Neigungen zur besonderen Ausprä gung fachlicher und außerfachlicher Qualifikationen der Studierenden. Hierbei besteht insbesondere auch die Möglichkeit, interdisziplinäre Themen sowie Themen zur Persönlichkeitsbildung mit einzubeziehen.

Fachübergreifende Lehrinhalte

Aufgabe der Module mit übergreifenden Inhalten ist es Fachgebiete wie z. B. Sprachen, Betriebswirtschaft, Recht aber auch Themen wie Rhetorik, Teamfähigkeit, das Referieren und das Anfertigen von Fachberichten zu schulen. Diese Fähigkeiten werden auch in einzelnenFächern der Vertiefungsrichtungen, zum Teil auch in den Ingenieuranwendungen vermittelt. Die Studierenden können im Rahmen der Allgemeinwissenschaftlichen Wahlpflichtfächer eigene Interessen einbringen. Die folgenden Module gehören zu dieser Gruppe:

- Betriebsführung
- Praxisseminar
- Technisches Englisch
- Allgemeinwissenschaftliches Wahlpflichtfach

Praktische Ausbildung und Bachelorarbeit

Die in den vorgeschalteten Modulgruppen erlernten Kenntnisse, Fertigkeiten und Kompetenzen werden im Praxissemester (5. Studiensemester), den Projektarbeiten und der abschließenden Bachelorarbeit angewendet und vertieft. In der Bachelorarbeit lösen die Studierenden eigenständig unter Anwendung fachspezifischer und wissenschaftlicher Methoden eine gestellte Aufgabe. Die Themen werden durch die Professoren*innen der Fakultät gestellt und an der Hochschule oder in Unternehmen bearbeitet. Die folgenden Module gehören zu dieser Gruppe:

- Praxissemester mit Praxisseminar
- Bachelorarbeit mit Bachelorseminar

1.3 Ziele einzelner Module

Die nachfolgend dargestellte Matrix gibt einen Überblick über die mit den Modulen/Teilmodulen zu erreichenden übergeordneten Lernziele. Die konkreten Lernziele der einzelnen Module sind in den ab Abschnitt 2 folgenden Modulblättern beschrieben.

Ziele-Matrix:

Übergeordnete Lernziele	Konkrete Lernziele	Module
Fachliches Wissen und Verständnis	Erwerb von umfangreichen ingenieurtechnischen, mathematischen und naturwissenschaftlichen Kenntnissen der Fahrzeugtechnik, die zu wissenschaftlich fundierter Arbeit und zu verantwortlichem Handeln bei der beruflichen Tätigkeit befähigen.	 Ingenieurmathematik Einführung in die Fahrzeugtechnik Technische Mechanik Werkstoffkunde Informatik Elektrotechnik Technische Thermodynamik Technische Strömungsmechanik Maschinendynamik Messtechnik Regelungs- und Steuerungstechnik Straßenfahrzeuge Module der Fahrzeugtechnik Technisches Querschnittswissen
	Erwerb von Verständnis für den multidisziplinären Kontext der Ingenieurwissenschaften.	 Maschinenelemente Konstruktion / CAD Projekt der Fahrzeugtechnik I + II Einführung in die Fahrzeugtechnik Straßenfahrzeuge Module der Fahrzeugtechnik Technisches Querschnittswissen

Selbstständige Anwendung wissenschaftliche r Erkenntnisse und Methoden	Fähigkeit zur Identifikation, Formulierung und Lösung von Problemen der Fahrzeugtechnik unterAnwendung etablierter wissenschaftlicher Methoden.	 Konstruktion / CAD Projekt der Fahrzeugtechnik I + II Praxissemester mit Praxisseminar Module der Fahrzeugtechnik Bachelorarbeit, Bachelorseminar
	Fähigkeit zur wissenschaftlich fundierten Analyse von Produkten, Prozessen und Methoden ihrer Disziplin.	 Technische Mechanik Maschinenelemente Konstruktion / CAD Projekt der Fahrzeugtechnik I + II Technisches Querschnittswissen
	Fähigkeit zur Auswahl passender Analyse-, Modellierungs-, Simulations- und Optimierungsmethoden und deren Anwendung mit hoher Handhabungskompetenz.	 Informatik Data Science Regelungs- und Steuerungstechnik Straßenfahrzeuge Module der Fahrzeugtechnik Technisches Querschnittswissen
Ingenieurmäßiges Entwickeln und Konstruieren	Erwerb der Fertigkeit, Entwürfe für Maschinen, Apparate, EDV-Programme oder Prozesse entsprechend dem Stand ihres Wissens und Verstehens und nach spezifizierten Anforderungen zu erarbeiten. Erwerb eines praxisorientierten Verständnisses für Entwurfsmethodologien und die Fertigkeit, diese kompetent anzuwenden.	 Maschinenelemente Konstruktion / CAD Projekt der Fahrzeugtechnik I + II Informatik Fertigungstechnik Regelungs- und Steuerungstechnik Praxissemester mit Praxisseminar Module der Fahrzeugtechnik Bachelorarbeit, Bachelorseminar

Untersuchen und Bewerten	Fähigkeit, Literaturrecherchen entsprechend dem Stand ihres Wissens und Verstehens durchzuführen und Datenbanken sowie andere Informationsquellen für ihre Arbeit zu nutzen. Fähigkeit, jeweils geeignete Experimente entsprechend dem Stand ihres Wissens und Verstehens zu planen und durchzuführen, die Daten zu interpretieren und daraus geeignete Schlüsse zu ziehen.	 Elektrotechnik Maschinendynamik Fertigungstechnik Messtechnik Regelungs- und Steuerungstechnik Straßenfahrzeuge Praxissemester mit Praxisseminar Module der Fahrzeugtechnik Bachelorarbeit, Bachelorseminar
Ingenieurpraxis	Fähigkeit, neue Ergebnisse der Ingenieur- und Naturwissenschaften unter Berücksichtigung betriebswirtschaftlicher, ökologischer und sicherheitstechnischer Erfordernisse in die industrielle und gewerbliche Produktion zu übertragen. Fähigkeit, Prozesse zu planen,zu steuern, zu überwachen, Anlagen und Ausrüstungen zu entwickeln und zu betreiben. Fähigkeit, das erworbene Wissen eigenverantwortlich zu vertiefen. Bewusstsein der nichttechnischen Auswirkungen der Ingenieurtätigkeit.	 Einführung in die Fahrzeugtechnik Elektrische Antriebe Maschinendynamik Fertigungstechnik Messtechnik Regelungs- und Steuerungstechnik Straßenfahrzeuge Praxissemester mit Praxisseminar Module der Fahrzeugtechnik Bachelorarbeit, Bachelorseminar

Soziale Kompetenzen

Fähigkeit, über Inhalte und Probleme der Fachdisziplin sowohl mit Fachkollegen als auchmit einer breiteren Öffentlichkeit auch fremdsprachlich und interkulturell zu kommunizieren.

Bewusstsein der gesellschaftlichen und ethischen Verantwortung und Kenntnis der berufsethischen Grundsätze und Normen.

Befähigung zur Arbeit sowohl einzeln als auch als Mitglied internationaler und gemischtgeschlechtlicher Gruppen, zur effektiven Organisation von Projekten sowie zur Übernahmevon Führungsverantwortung.

Befähigung zur Sozialisierung und zur Arbeit im betrieblichen bzw. wissenschaftlichen Umfeld durch ausreichenden Praxisbezug.

Befähigung zu lebenslangem Lernen.

- Konstruktion / CAD
- Projekt der Fahrzeugtechnik I + II
- Betriebsführung
- Messtechnik
- Regelungs- und Steuerungstechnik
- Praxissemester mit Praxisseminar
- Straßenfahrzeuge
- Module der Fahrzeugtechnik
- Bachelorarbeit,
 Bachelorseminar

2. Modulbeschreibungen

1) Einführung in die Fahrzeugtechnik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Leistungsnachweis Lehrform / SWS		Arbeitsaufwan	d / h
3	schPr 90 min	SU	3	Gesamt	90		
Modulverantwortlich	Dozent*in	Ü	-	Präsenz	45		
Prof. Dr. Singer	Prof. Dr. Singer; Prof. Dr. Grau; Prof. Dr. Schaal;	Pr	-	Eigenstudium	45		
Dauer	Häufigkeit d. Angebots	Sprach	ne				
1 Semester	Jedes Wintersemester	Deutsc	:h				

Empfohlene Voraussetzungen

Keine

Inhalt

- Einführung in die Fahrzeugphysik
- Kräfte am Fahrzeug
- Fahrzeugkinematik
- Schwingungen in der Fahrzeugtechnik
- Fahrzeugakustik
- Wärmetechnik
- Aerodynamik von Fahrzeugen
- Anwendungsbeispiele aus der Fahrzeugtechnik: u.a. Antrieb, Bremse, Fahrwerk, Lenkung, Karosserie und Fahrerassistenzsysteme
- Demonstrationen am Fahrzeug und im Labor

Qualifikationsziel

- Verständnis für physikalische Vorgänge im Kraftfahrzeug
- Fähigkeit physikalische Vorgänge im Kraftfahrzeug mathematische zu beschreiben
- Fähigkeit, ausgehend von den physikalischen Vorgängen im Kraftfahrzeug, Anforderungen an Fahrzeugsysteme und Komponenten abzuleiten

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

- E. Hering, R. Martin, M. Stohrer: Physik für Ingenieure. Springer Vieweg.
- U. Harten: Physik: Eine Einführung für Ingenieure und Naturwissenschaftler. Springer Vieweg.
- K.-L. Haken: Grundlagen der Kraftfahrzeugtechnik. Hanser.
- S. Pischinger, U. Seiffert: Vieweg Handbuch Kraftfahrzeugtechnik. Springer Vieweg.

Informatik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufw	and / h
5	schPr 90 min	SU	2	Gesamt	150
	StA mE/oE	Ü	2	Präsenz	60
Modulverantwortlich	Dozentin / Dozent	Pr	-	Eigenstudiu m	90
Prof. Dr. Gölzer	Prof. Dr. Gölzer				
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnummer	
1 Semester	Jedes Semester	Deutsch		1340	

Empfohlene Voraussetzungen

Keine

Inhalt

- Rechnerarchitekturen, Rechnernetze
- Softwaresysteme, Betriebssysteme und Datenbanken
- Programmentwicklung und Softwareengineering
- Einführung in die Programmiersprache C/C++
 - Datentypen
 - Operatoren und Ausdrücke
 - Ablaufsteuerung
 - Funktionen
 - Klassen und Objekte
- Algorithmen und Datenstrukturen

Qualifikationsziel

- Kenntnisse grundlegender IT-Infrastrukturen und Softwaresysteme
- Kenntnisse der Grundlagen und Methoden der Softwareentwicklung
- Anwendung von Entwicklungsumgebungen zur Programmerstellung
- Fähigkeit zur Erstellung von Programmen in einer höheren Programmiersprache
- Fähigkeit technische Fragestellungen durch Algorithmen mit Programmen zu lösen

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Ernst, Schmidt, Beneken: Grundkurs Informatik, Springer Vieweg

Willms, A.: C++ Programmierung lernen. Bonn: Addison-Wesley

Konstruktion I (Konstruktion I mit CAD I)

Leistungspunkte	Leistungsnachweis	Lehrfor	Lehrform / SWS		Arbeitsaufwand /	
5	schPr 90 min	SU	4		Gesamt	150
	Übung, Studienarbeit	Ü	1		Präsenz	67
Modulverantwortlich	Dozentin / Dozent	Pr	-		Eigenstudiu	83
					m	
Prof. Dr. Koch	Prof. Dr. Koch und					
	Dozentenpool					
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnummer		er
1 Semester	ledes Semester	Deutsch	n	1350		

Empfohlene Voraussetzungen

Keine

Inhalt

- Technische Darstellungslehre, Technische Zeichnungen, weitere Bestandteile technischer Dokumentationen, Normung, Grundlagen des Austauschbaus, Gestaltung von technischen Gegenständen
- Anfertigung von Produktmodellen und deren Dokumentation.
- CAD1: Aufbau und Funktionsstruktur eines 3D-CAD-Systems, Modellierung von Volumen-Konstruktionselementen und Einzelteilen, Einsatz von Standardkonstruktionselementen, Erstellung von Einzelteilzeichnungen.

Qualifikationsziel

- Kenntnis der technischen Produktdokumentation.
- Kenntnis der korrekten Bauteildarstellung auf der Zeichnung.
- Kenntnis von Normteilen und genormten konstruktiven Gestaltungselementen.
- Kenntnisse von Maßtoleranzen und Passungen.
- Kenntnisse von grundlegenden Form- und Lagetoleranzen.
- Kenntnis des ISO-GPS-Systems.
- Fertigkeiten in der Zeichnungserstellung von Hand.
- Fertigkeiten in konventionellen Methoden der Produktdokumentation und in CAD-gestützten Arbeitsweisen.
- Grundlegende Kenntnisse über Aufbau und Funktionsstruktur eines vollparametrisierten 3D-CAD-Systems.
- Fähigkeit zur Erstellung von Einzelteilen mittels CAD-System als Volumenmodell und zum strukturierten Aufbau von Baugruppen.
- Fähigkeit zur Ableitung von funktions- und fertigungsgerechten Teilezeichnungen aus CAD-Systemen.
- Kenntnisse über weiterführende 3D-CAD-Funktionalitäten wie z.B. Aufbau und Analyse einer Baugruppe als kinematisches Modell

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Labisch/Weber: Technisches Zeichnen: selbstständig lernen und effektiv üben; Wiesbaden, Springer

Vieweg

Kurz/Wittel, Böttcher/Forberg: Technisches Zeichnen: Grundlagen, Normung, Übungen und Projektaufgaben; Wiesbaden, Springer Fachmedien.

Fischer et al: Tabellenbuch Metall. - Europa-Fachbuchreihe für Metallberufe; Haan-Gruiten, Europa-Lehrmittel - Europa-Nr. 1060X

Jorden, W.; Schütte, W.: Form- und Lagetoleranzen: Handbuch für Studium und Praxis. Hanser-Verlag, München.

Werkstoffkunde

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Lehrform / SWS		Arbeitsaufwan	d / h
5	schPr 90 min	SU	4	Gesamt	150		
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	75		
Prof. Dr. von Großmann	Prof. Dr. von Großmann und Dozentenpool	Pr	-	Eigenstudiu m	75		
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier		
1 Semester	Jedes Semester	Deutsch		1250			

Empfohlene Voraussetzungen

Keine

Inhalt

- Struktur der Werkstoffe (Metalle, Keramiken, Kunststoffe), Gitteraufbau, Kristallbildung, Mechanismen der Verformung
- Wesentliche Eigenschaften und innerer Aufbau von metallischen Werkstoffen
- Verschiedene normgerechte, mechanische, technologische, physikalische, chemische und zerstörungsfreie Prüfverfahren
- Phasenumwandlung in metallischen Werkstoffen. Binäre Zustandsschaubilder, Entwicklung des Eisen-Kohlenstoff-Schaubildes, Glüh- und Härteverfahren, ZTU-Schaubilder, Legierungsbildung
- Wirkung von Legierungselemente auf die Gefügeausbildung, die mechanischen Eigenschaften und andere Werkstoffeigenschaften
- Einfluss von Herstellungs- und Verarbeitungsverfahren auf die Werkstoffeigenschaften
- Normgerechte Bezeichnung der metallischen Werkstoffe mit Beispielen
- Einblick in die Werkstoffschädigung Arten, Entstehung, Verminderung und Vermeidung
- Eigenschaften, Herstellung und Anwendung von Stahl und Aluminium

Qualifikationsziel

- Kenntnisse der werkstoffgerechten Behandlung und Anwendung metallischer Werkstoffe im Maschinenbau.
- Kenntnis verschiedener Werkstoffprüfverfahren
- Fähigkeit den Zusammenhang zwischen Werkstoffstruktur und Gebrauchseigenschaften zu erkennen.
- Grundlegende Fähigkeit, wissenschaftliche Erkenntnisse der Werkstoffkunde für wissenschaftlich fundiertes Arbeiten im Ingenieurberuf umzusetzen.
- Fähigkeit zur anforderungsgerechten Werkstoffauswahl

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

H.J. Bargel und G. Schulze: Werkstoffkunde, VDI Verlag

W. D. Callister und D. G. Rethwisch: Materialwissenschaft und Werkstofftechnik, Wiley VCH

Verlag J. Gobrecht, Werkstofftechnik - Metalle, Oldenbourg

J. F. Shackleford: Werkstofftechnologie für Ingenieure. Pearson Studium

W. Schatt und H. Worch: Einführung in die Werkstoffwissenschaften. Deutscher Verlag für

Grundstoffindustrie, Stuttgart

W. Domke: Werkstoffkunde und Werkstoffprüfung,

W. Girardet, Essen. B. Ilschner und R.F. Singer: Werkstoffwissenschaften und Fertigungstechnik, Springer

W.Weißbach: Werkstoffkunde, Springer Verlag Horstmann: Das Zustandsschaubild Eisen-Kohlenstoff, Verlag Stahleisen

Ingenieurmathematik II

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwar	nd / h
5	schPr 90 min	SU	4	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	75
Prof. Dr. Kröger	Prof. Dr. Kröger Prof. Dr. Gorski	Pr	-	Eigenstudiu m	75
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ner
1 Semester	Jedes Semester	Deutsch		1370	

Empfohlene Voraussetzungen

Ingenieurmathematik I

Inhalt

- Kurven (Parametrisierung von Kurven, Kurvendiskussion parametrisierter Kurven)
- Funktionen von mehreren Variablen (Darstellungsformen und Visualisierung; Stetigkeit; Mehrdimensionale Differentialrechnung mit Anwendungen wie Fehlerrechnung und Extremwertaufgaben)
- Integralrechnung in einer reellen Variablen und ihre Anwendungen
- Integralrechnung in mehreren reellen Variablen (ebene und räumliche Bereichsintegrale, Integration über Normalbereiche, Transformationsformel (insbesondere Polar-, Zylinder und
- Kugelkoordinaten)) und ihre Anwendungen (Berechnung von Flächeninhalt, Volumen und Schwerpunkten krummlinig berandeter Gebiete in zwei und drei Raumdimensionen))
- Kurvenintegrale (Integrale von Vektorfeldern bzw. Skalarfeldern entlang Kurven, Berechnung von Kurvenlängen, Berechnung und Verwendung von Potenzialfunktionen)
- Gewöhnliche Differentialgleichungen (lineare und Nichtlineare Differentialgleichungen erster Ordnung, lineare Differentialgleichungen zweiter und höherer Ordnung, lineare Systeme von Differentialgleichungen)

Qualifikationsziel

Fundierte Kenntnis und vertieftes Verständnis der speziell für den Maschinenbau relevanten mathematischen Begriffe, Gesetz, Denkweisen und Methoden.

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

Burg, K., Haf, H., Wille, F., Höhere Mathematik für Ingenieure, Band I, II, III, Teubner

Fetzer, A., Fränkel, H., Mathematik, Band 1,2, Springer

Kreyszig, E., Normington, E.J: Advanced Engineering Mathematics and Maple computer guide,

John Wiley-Sons

Meyberg, K., Vachenauer, P., Höhere Mathematik, Band 1,2, Springer

Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 2, Vieweg

Schott, D., Ingenieurmathematik mit MATLAB, Fachbuchverlag Leipzig

Stry, Y., Schwenkert, R., Mathematik kompakt: für Ingenieure und Informatiker, Springer-Verlag

Stingl, P., Mathematik an Fachhochschulen, Hanser

Westermann, Th., Mathematik für Ingenieure mit Maple, Band 1, 2, Springer-Verlag

Technische Mechanik II (Festigkeitslehre Vertiefung)

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		rform / SWS Arbeitsaufwa	
5	schPr 90 min	SU	4	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	75
Prof. Dr. Haas	Prof. Dr. Haas und Dozentenpool	Pr	-	Eigenstudiu m	75
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumn	ner
1 Semester	Jedes Semester	Deutsch		1380	

Empfohlene Voraussetzungen

Technische Mechanik I, Ingenieurmathematik I, Werkstoffkunde

Inhalt

- Mehrachsige Beanspruchung: Spannungs- und Verzerrungstensor verallgemeinertes Hookesches Stoffgesetz - Tensortransformation - Mohrscher Spannungskreis - Festigkeitshypothesen -Festigkeitsnachweis bei statischer Beanspruchung.
- Verformung bei Zug/Druck, Biegung, Torsion und Querkraftschub: Differentialgleichungen des Stabes und der Biegelinie - Analyse statisch unbestimmter Systeme.
- Festigkeitsnachweis bei schwingender Beanspruchung: Spannungsermittlung –
 Festigkeitskennwerte Dauerfestigkeitsnachweis bei ein- und mehrachsiger Beanspruchung.

Qualifikationsziel

Anwendung mechanischer Grundgesetze auf mehrachsig beanspruchte, elastostatische Systeme, Fähigkeiten zur Ermittlung von mechanischen Spannungen und Verformungen bei mehrachsiger Beanspruchung, Erwerb von Kompetenzen zur Analyse und Dimensionierung von Bauteilen bei statischer und schwingender Beanspruchung unter dem Aspekt der Sicherheit und Wirtschaftlichkeit.

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

D. Gross u. a.: Technische Mechanik 2. Springer Vieweg.

L. Issler u.a.: Festigkeitslehre - Grundlagen. Springer.

R.C. Hibbeler: Technische Mechanik 2: Festigkeitslehre. Pearson Studium.

H. Altenbach: Holzmann/Meyer/Schumpich - Technische Mechanik Festigkeitslehre. Springer Vieweg.

Maschinenelemente I

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60
Prof. Dr. Monz	Prof. Dr. Monz und Dozentenpool	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier
1 Semester	Jedes Semester	Deutsch		1260	

Empfohlene Voraussetzungen

Ingenieurwissenschaftliche Grundlagen in Mathematik, Physik, Technischer Mechanik, Werkstoffkunde

Inhalt

Grundlagen zur Berechnung von Maschinenelementen, Einführung in die Betriebsfestigkeit, Schweißverbindungen, andere stoffschlüssige Verbindungen, Schraubenverbindungen und Bewegungsgewinde, Technische Federn

Qualifikationsziel

- Fähigkeit zur Dimensionierung und Berechnung von Maschinenelementen unter Beachtung von Normen und Auslegungsvorschriften.
- Kenntnis der Auswahl, Eigenheiten und Anwendung von Maschinenelementen nach funktions-,
 berechnungs- und konstruktionstechnischen Grundsätzen sowie nach ökonomischen Erfordernissen.

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Roloff / Matek: Maschinenelemente mit Tabellenbuch

Hoischen: Technisches Zeichnen Klein: Einführung in die DIN-Normen

Dubbel: Taschenbuch für den Maschinenbau

Technische Thermodynamik

Leistungspunkte	Leistungsnachweis	Lehrfo	rm / SWS	Arbeitsaufwar	nd / h
5	schPr 90 min	SU	3	Gesamt	150
Modulverantwortlich	Dozentin./.Dozent	Ü	1	Präsenz	60
Prof. Dr. Popp	Prof. Dr. Popp	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumn	ner
1 Semester	Jedes Semester	Deutsc	h	1400	

Empfohlene Voraussetzungen

Mathematische Grundkenntnisse

Inhalt

- Zustandsgrößen von Gasen und Dämpfen in Anlagen und Maschinen
- Zustandsgleichungen, Zustandsdiagramme, Dampftafeln
- Zustandsänderungen feuchter Luft
- Vorstellung und Betrachtung von Kreisprozessen:
 - Gaskreisprozesse und Dampfkreisprozesse
 - Wärme-Kraft-Maschinen, Kälteanlage, Wärmepumpe
- Rechenaufgaben zu Zustandsänderungen und ausgewählten Kreisprozessen mit typischen Arbeitsmedien

Qualifikationsziel

- Kenntnis thermodynamischer Kreisprozesse in Maschinen und Anlagen des Maschinenbaus und der Energieversorgung. Modellierung typischer Zustandsänderungen sowie deren Vereinfachungen.
- Kenntnis der Wirkungsgrade von Prozessen und Komponenten. Kenntnis thermodynamischer Zustandsdiagramme zur Darstellung von Kreisprozessen und Prozessen mit feuchter Luft. Kenntnis von Zustandsgleichungen und Dampftafeln zur Ermittlung thermodynamischer Zustandsgrößen.
- Fähigkeit, thermodynamische Kreisprozesse in Zustandsdiagrammen darzustellen. Fähigkeit, für die einzelnen Zustandspunkte die relevanten Zustandsgrößen zu ermitteln. Fähigkeit, für einzelne Zustandsänderungen sowie vollständige Kreisprozesse Erhaltungssätze (Masse, Energie, Entropie) aufzustellen und daraus Prozessgrößen wie Arbeit und Wärme bzw. Leistungen und Wärmeströme zu berechnen. Fähigkeit, verlustbehaftete Prozesse von reversiblen zu unterscheiden und Wirkungsgrade zu bestimmen.
- Kompetenz, beliebige Kreisprozesse zu modellieren, für sie Erhaltungssätze aufzustellen und nach Recherche bzw. Berechnung der Stoff- daten und Zustandsgrößen diese Kreisprozesse zu berechnen.
- Kompetenz, die Ergebnisse anhand theoretischer Maximalwerte zu interpretieren. Kompetenz, Eingangswerte, Baugröße oder Arbeitsmedium zur Lösung einer energietechnischen Aufgabenstellung zu modifizieren oder auch einen anderen Prozess auszuwählen.

Verwendbarkeit

B-MB, B-IBT

Literatur

H.-D. Baehr / S. Kabelac: Thermodynamik – Grundlagen und technischen Anwendungen, VDI-Springer-Verlag

G. Cerbe / G. Wilhelms: Technische Thermodynamik – Theoretische Grundlagen und praktische Anwendungen, Carl Hanser Verlag

G. Wilhelms: Übungsaufgaben Technische Thermodynamik, Carl Hanser Verlag

Projekt aus der Fahrzeugtechnik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwan	and / h		
5	StA, LN (CAD)	SU	2	Gesamt	150		
Modulverantwortlich	Dozent*in	Ü	1	Präsenz	45		
Prof. Dr. Grau /N.N	Prof. Dr. Grau und weitere	Pr	-	Eigenstudium	105		
Dauer	Häufigkeit d. Angebots	Sprach	ie				
1 Semester	Jedes Semester	Deutscl	h				

Empfohlene Voraussetzungen

Keine

Inhalt

- Technische Darstellungslehre, Technische Zeichnungen, weitere Bestandteile technischer Dokumentationen, Normung, Grundlagen des Austauschbaus, Gestaltung von technischen Gegenständen
- Anfertigung von Produktmodellen aus dem Bereich der Fahrzeugtechnik und deren Dokumentation.
- CAD2: Erstellung von Baugruppen mit Skelettmodellen, Erstellen von kinematischen Baugruppen und davon abgeleitete Simulationen, Flächenmodellierung auf Bauteilebene

Qualifikationsziel

- Kenntnis der technischen Produktdokumentation
- Kenntnis der korrekten Bauteildarstellung auf der Zeichnung
- Kenntnis von Normteilen und genormten konstruktiven Gestaltungselementen
- Kenntnisse von Maßtoleranzen und Passungen
- Kenntnisse von grundlegenden Form- und Lagetoleranzen
- · Kenntnis des ISO-GPS-Systems
- Fertigkeiten in der Zeichnungserstellung von Hand
- Fertigkeiten in konventionellen Methoden der Produktdokumentation und in CAD-gestützten Arbeitsweisen
- Grundlegende Kenntnisse über Aufbau und Funktionsstruktur eines vollparametrisierten 3D-CAD-Systems.
- Fähigkeit zur Erstellung von Einzelteilen mittels CAD-System als Volumenmodell und zum strukturierten Aufbau von Baugruppen.
- Fähigkeit zur Ableitung von funktions- und fertigungsgerechten Teilezeichnungen aus CAD-Systemen.
- Kenntnisse über weiterführende 3D-CAD-Funktionalitäten wie z.B. Aufbau und Analyse einer Baugruppe als kinematisches Modell

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

Koch, M.: Skript zur Lehrveranstaltung.

Labisch/Weber: Technisches Zeichnen: selbstständig lernen und effektiv üben; Wiesbaden, Springer Vieweg Kurz/Wittel, Böttcher/Forberg: Technisches Zeichnen: Grundlagen, Normung, Übungen und Projektaufgaben; Wiesbaden, Springer Fachmedien.

Fischer et al: Tabellenbuch Metall. - Europa-Fachbuchreihe für Metallberufe; Haan-Gruiten, Europa-Lehrmittel - Europa-Nr. 1060X

Jorden, W.; Schütte, W.: Form- und Lagetoleranzen: Handbuch für Studium und Praxis. Hanser-Verlag, München.

Technische Strömungsmechanik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwan	Arbeitsaufwand / h	
5	schPr 90 min	SU	3	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60	
Prof. Dr. Schmid	Prof. Dr. Schmid Prof. Dr. Bikas	Pr	-	Eigenstudiu m	90	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier	
1 Semester	Jedes Semester	Deutsch		5080	5080	

Empfohlene Voraussetzungen

Ingenieurmathematik, Physik, Technische Thermodynamik

Inhalt

Terminologie der Strömungsmechanik, Druckbegriff, Hydrostatik, Aerostatik, Atmosphäre, Kompressibilität bei Fluiden, Oberflächenspannung (Kraftwirkung), Berechnung der Belastung auf Behälterwände, stationäre reibungsfreie Strömung, Stromlinien, ein- und mehrdimensionale Strömung, Eulergleichungen, Bernoulligleichung, Potentialströmung, Ausfluss aus Behältern unterschiedlicher Konfiguration, Massenerhaltung, Impulssatz, Anwendung des Impulssatzes zur Berechnung von Kräften und Leistungen, laminare und turbulente Strömungen bei Innen- und Außenströmungen, Druckverlustberechnungen, Druck- und Geschwindigkeitsverteilungen in einfachen Leitungssystemen, Widerstandsbegriff und Berechnung des Strömungswiderstandes, Luftkräfte am endlich und unendlich breiten Tragflügel.

Qualifikationsziel

- Kenntnis der physikalischen Gesetzmäßigkeiten zur Beschreibung ruhender und strömender Fluide
- Fähigkeit, diese Kenntnisse bei der praktischen Berechnung von maschinentechnischen Elementen und Anlagen anzuwenden.
- Kenntnisse zur Bestimmung von Druck- und Geschwindigkeitsverteilung in einfachen Rohrleitungsnetzen
- Fähigkeit strömungsverursachte Kräfte zu bestimmen und bei der Bauteildimensionierung zu berücksichtigen.
- Fähigkeit Gesetzmäßigkeiten der Fluidmechanik auf strömungstechnische Problemstellungen allgemeiner Art zu übertragen
- Erkennen von Strömungsproblemen mit dreidimensionalem Charakter oder bei Strömungen mit sehr großen Geschwindigkeiten (Gasdynamik)

Verwendbarkeit

B-MB, B-FZT

Literatur

Kümmel, W.: Technische Strömungsmechanik, Teubner

Böswirth, L.: Technische Strömungslehre, Vieweg

Bohl, W.: Technische Strömungslehre, Vogel Iben, Hans K.: Starthilfe Strömungslehre, Teubner

Krause, E.: Strömungslehre, Gasdynamik und Aerodynam. Laboratorium, Teubner

Wagner, W.: Strömung und Druckverlust, Vogel

Numerische Methoden (Numerische Lösungsverfahren und Einführung in MATLAB)

Leistungspunkte	Leistungsnachweis	Lehrfo	rm / SWS	Arbeitsaufwan	nd / h	
5	schPr 90 min	SU	2	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	2	Präsenz	60	
Prof. Dr. Papastavrou	Prof. Dr. Papastavrou Prof. Dr. Vogel- Brinkmann	Pr	-	Eigenstudiu m	90	
Dauer	Häufigkeit d. Angebots	Sprach	ie	Prüfungsnumm	üfungsnummer	
1 Semester	ledes Semester	Deutsch		1430	1430	

Empfohlene Voraussetzungen

Ingenieurmathematik, Informatik

Inhalt

- Numerische Lösung von gewöhnlichen Differentialgleichungen und -systemen
- Numerische Integrationsverfahren
- Lösung linearer und nichtlinearer Gleichungssysteme
- Numerische Lösung von partiellen Differentialgleichungen
- Einführung in die Softwareumgebung MATLAB
- Grundlagen der Programmierung und Grafik in MATLAB
- Anwenderbezogene Programmieraufgaben

Qualifikationsziel

- Kenntnisse von Methoden zur numerischen Lösung ingenieurwissenschaftlicher Aufgabenstellungen
- Kenntnisse der wesentlichen Programmierelemente von MATLAB
- Fertigkeiten in der Anwendung numerischer Methoden auf einfache Berechnungsaufgaben
- Fähigkeiten zur Programmierung einfacher numerischer Algorithmen
- Verständnis für die programmgestützte Anwendung numerischer Methoden in der Ingenieurpraxis

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Mohr, Richard: Numerische Methoden in der Technik, Springer Vieweg

Stein, Ulrich: Programmieren mit MATLAB, Hanser-Verlag

Technische Mechanik III (Kinematik und Kinetik)

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwan	d / h	
5	schPr 90 min	SU	3	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60	
Prof. Dr. Ertz	Prof. Dr. Ertz und Dozentenpool	Pr	-	Eigenstudiu m	90	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	er	
1 Semester	Jedes Semester	Deutsch		1440	1440	

Empfohlene Voraussetzungen

Technische Mechanik I-II, Ingenieurmathematik I-II

Inhalt

Kinematik und Kinetik von Punktmassen, Massenpunktsystemen und starren Körpern:

Geometrische Analyse der Bewegungen, Wechselwirkung von Kräften und Bewegungen, Newtonsche Axiome der Mechanik, Schwerpunktsatz, Drallsatz, Arbeitssatz, Energiesatz, Impulssatz, Stoßvorgänge.

Qualifikationsziel

Anwendung mechanischer Grundgesetze auf technische Systeme, Einsicht in das dynamische Verhalten technischer Systeme und dessen Analyse anhand physikalischer Grundgesetze.

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

- D. Gross u. a.: Technische Mechanik 3. Springer Vieweg.
- B. Assmann, P. Selke: Technische Mechanik 3. Oldenbourg Wissenschaftsverlag.
- M. Mayr: Technische Mechanik. Hanser.
- C. Eller: Holzmann/Meyer/Schumpich Technische Mechanik Kinematik und Kinetik. Springer Vieweg.

Maschinenelemente II

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwar	Arbeitsaufwand / h	
5	schPr 90 min	SU	3	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	2	Präsenz	75	
Prof. Dr. Adrian	Prof. Dr. Adrian Prof. Dr. Schröder	Pr	-	Eigenstudiu m	75	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumn	ner	
1 Semester	Jedes Semester	Deutsch		1450	1450	

Empfohlene Voraussetzungen

Technische Mechanik I-II, Werkstoffkunde, Maschinenelemente I, Konstruktion I

Inhalt

- Achsen und Wellen
- Welle-Nabe-Verbindungen
- Wälzlager und Wälzlagerungen
- Gleitlager
- Zahnräder und Zahnradgetriebe

Qualifikationsziel

- Kenntnis der Auswahl, Eigenheiten und Anwendung von Maschinenelementen nach funktions-,
 berechnungs- und konstruktionstechnischen Grundsätzen sowie nach ökonomischen Erfordernissen.
- Fähigkeit zur Auslegung von Maschinenelementen nach den allgemein anerkannten Regeln der Technik.

Verwendbarkeit

B-MB, B-FZT

Literatur

Roloff/Matek: Maschinenelemente, Lehrbuch und Tabellenbuch; Wiesbaden: Vieweg

Niemann, G.: Maschinenelemente (Band 1-3); Berlin: Springer

Beitz, W. u. a.: Dubbel, Taschenbuch für den Maschinenbau; Berlin: Springer

Fertigungstechnik I (Grundlagen industrieller Fertigung, Spanlose Fertigung, Spanende Fertigung)

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwar	nd / h	
5	schPr 90 min	SU	5	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	75	
Prof. Dr. Felderhoff	Prof. Dr. Felderhoff Prof. Dr. von Großmann Prof. Dr. Rauer	Pr	-	Eigenstudiu m	75	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumn	ner	
1 Semester	Jedes Semester	Deutsch		1460	1460	

Empfohlene Voraussetzungen

Werkstoffkunde, Physik, Maschinenelemente I

Inhalt

- Grundlagen industrieller Fertigung
 - Produktionsstrategie, Produktionsanforderungen, Produktionskonzepte
 - Ganzheitliche Produktionssysteme
 - Gestaltung industrieller Prozessketten
 - Organisation industrieller Fertigung
- Spanlose Fertigung
 - Gießtechnik
 - Sintertechnik
 - Rapid Prototyping Verfahren
 - Umformtechnik
 - Grundlagen der plastischen Formgebung
 - ausgewählte Verfahren der Umform- und Zerteiltechnik
 - Fertigung von Halbzeugen, Normteilen und Kfz-Komponenten
- Spanende Fertigung
 - Grundlagen der Fertigungsverfahrensgruppe Trennen
 - Grundlagen der Zerspanung
 - Schneidengestalt, Zerspanungsgrößen, Orthogonalprozeß
 - Zerspanbarkeit: Werkzeugverschleiß und Standzeit, Zerspankräfte,
 - Oberflächengüte, Spanbildung
 - Schneidstoffe und Beschichtungsverfahren
 - Schnittwertbestimmung und Prozessoptimierung

Qualifikationsziel

- Grundlagen industrieller Fertigung
 - Kenntnisse der organisatorischen und planerischen Grundlagen industrieller Fertigungsbereiche
 - Fähigkeit zur Optimierung industrieller Produktionsbereiche unter technischen und wirtschaftlichen Aspekten.
- Spanlose Fertigung

- Kenntnisse über die dominierenden Verfahren der spanlosen Fertigung
- Kenntnisse in der fertigungsgerechten Konstruktion von Werkstücken
- Kenntnisse der Prozessketten der (umformenden) Fertigungsverfahren
- Fähigkeit zur Auswahl wirtschaftlicher Fertigungsoptionen
- Spanende Fertigung
 - Kenntnis der wichtigsten Verfahren der spangebenden Fertigung
 - Fähigkeit zur Auswahl und Optimierung von Zerspanungsverfahren und -bedingungen unter technischen und wirtschaftlichen

Verwendbarkeit

B-MB, B-FZT

Literatur

Wiendahl, Reichardt, Nyhuis: Handbuch Fabrikplanung - München, Carl Hanser Verlag

Dombrowski, Mielke: Ganzheitliche Produktionssysteme - Berlin, Springer

Fritz/Schulze: Fertigungstechnik. - Berlin, Springer

Awiszus/Bast/Dürr/Matthes: Grundlagen der Fertigungstechnik. - München, Fachbuchverl.

Leipzig im Hanser-Verlag

Fügetechnik Schweißtechnik, DVS-Verlag

Klocke, F., König, W: Fertigungsverfahren, Bd. 1, Springer

Wärmeübertragung

Leistungspunkte	Leistungsnachweis	Lehrforn	m/SWS	Arbeitsaufwan	d / h	
2	schPr 90 min	SU	2	Gesamt	60	
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	30	
Prof. Heying	Prof. Heying	Pr	-	Eigenstudiu m	30	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier	
1 Semester	Jedes Semester	Deutsch		5065	5065	

Empfohlene Voraussetzungen

Ingenieurmathematik I-II, Technische Thermodynamik, Technische Strömungsmechanik

Inhalt

- Gesetzmäßigkeiten der Wärmeübertragung durch feste Wände, fluide Grenzschichten und Gase
- Mechanismen der Wärmeübertragung
- Wärmeleitung (ein- und mehrschichtig, ebene, zylindrische und Kugelgeometrie)
- Konvektiver Wärmeübergang (empirische Gleichungen, dimensions- lose Kennzahlen, Einflussgrößen Geometrie, Strömungsart und Zustandsgrößen des Fluids)
- Wärmestrahlung (Physikalische Grundlagen, Emissionsfaktoren, Geometrie)
- Anwendung der Gesetze der Wärmeübertragung anhand technischer Beispiele
- Bauarten von Wärmeübertragern. Konstruktive Betrachtung und wärme- technische Berechnung
- Umgang mit Tabellenwerken für Stoffwerte und Zustandsgrößen bei der Berechnung obiger Vorgänge
- Verfahrensoptimierung bei der Wärmenutzung

Qualifikationsziel

- Kenntnis der Gesetze der Wärmeübertragung
- Kenntnis der Grundlagen empirischer Rechengleichungen sowie derer Randbedingungen und Genauigkeiten; Kenntnis der zugehörigen relevanten Stoffdaten sowie derer Quellen.
- Fähigkeit, diese Gesetze bei der praktischen Berechnung unterschiedlicher Anlagen und Apparate anzuwenden.
- Fähigkeit, die entsprechende Berechnungsgleichungen auf der Grundlage gegebener Randbedingungen auszuwählen, z.T. herzuleiten oder umzuwandeln und unter Beachtung der jeweiligen Problemanordnung anzuwenden.
- Fähigkeit, Stoffdaten und dimensionslose Kennzahlen zu recherchieren, zu berechnen und zu interpretieren.
- Kompetenz, für eine gegebene Anwendung grundlegende Parameter so festzulegen, dass ein ökonomischer und betriebssicherer Apparat das Ergebnis der Auslegung ist.
- Kompetenz, Rechenergebnisse kritisch zu interpretieren und ggf. durch Modifikation

Verwendbarkeit

B-MB, B-FZT

Literatur

Böckh, P.v.: Wärmeübertragung - Grundlagen und Praxis Springer

Marek, R., Nitsche, Kl.: Praxis der Wärmeübertragung Hanser

Polifke, W., Kopitz, J.: Wärmeübertragung - Grundlagen, analytische und numerische Methoden Pearson Baehr, H.-D., Stephan, K.: Wärme- und Stoffübertragung Springer VDI-Wärmeatlas (Springer)

Elektrotechnik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwan	nd / h	
3	schPr 90 min	SU	2	Gesamt	90	
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	45	
Prof. Dr. Krejtschi	Prof. Dr. Krejtschi	Pr	-	Eigenstudiu	45	
	Prof. Dr. Dietz			m		
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ner	
1 Semester	Jedes Semester	Deutsch		1480	1480	

Empfohlene Voraussetzungen

Ingenieurmathematik I-II, Physik

Inhalt

- Bauelemente der Elektrotechnik
- Gleichstromkreise
- Magnetisches Feld
- Wechselstrom und Drehstrom

Qualifikationsziel

- Grundlegendes Verständnis für die Physik elektrischer Bauelemente
- Fähigkeit die elektrotechnischen Grundgesetzte auf einfache Problematiken anzuwenden
- Grundlegendes Verständnis für die Physik und die Anwendung von Magnetismus in Kraftmaschinen
- Grundlegende Fertigkeiten zur Beschreibung von Wechsel- und Drehstromsystemen

Verwendbarkeit

B-MB, B-FZT

Literatur

Linse, H.: Elektrotechnik für Maschinenbauer

Busch, R.: Elektrotechnik und Elektronik

Messtechnik

Leistungspunkte	Leistungsnachweis	Lehrfor	rm / SWS	Arbeitsaufwand / h		
5	schPr 90 min, TN, VB,	SU	2	Gesamt	150	
	Kol.	Ü	-	Präsenz	60	
Modulverantwortlich	Dozentin / Dozent	Pr	2	Eigenstudiu	90	
				m		
Prof. Dr. Grau	Prof. Dr. Grau					
	und weitere					
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	mer	
1 Semester	ledes Semester	Deutsc	h	5130		

Empfohlene Voraussetzungen

Ingenieurmathematik, Physik, Technische Mechanik, Elektrotechnik

Inhalt

Grundbegriffe, Einheitensystem, Messschaltungen, Grundlagen der üblichen in der Praxis eingesetzten Sensoren zur Messung nichtelektrischer Größen, Charakterisierung von Sensoren, Messschaltungen zur Reduzierung / Vermeidung von Messabweichungen, Messumformer, statisches und dynamisches Übertragungsverhalten, analoge und digitale Signalverarbeitung, Abweichungsbetrachtungen, Messkettendimensionierung, Filterung, Glättung von Signalen, Signalkonditionierung, Abtastung von Messsignalen, Kalibrierung, Justierung von Aufnehmern, Anpassung von Messketten, rechnergestützte Messsignalerfassung und -auswertung mit kommerzieller Software, Analyse und Dokumentation von Messergebnissen.

Qualifikationsziel

- Das Modul besteht aus einer Vorlesung mit begleitetem Praktikum, das die Fähigkeit vermittelt, eigenständig Messverfahren und Messsysteme zu verstehen, zu bewerten, auszuwählen und anwenden zu können.
- Kenntnisse über die Terminologie der Messtechnik.
- Kenntnisse über Messschaltungen und Messsysteme mit analoger und digitaler Signalverarbeitung.
- Kenntnisse über statisches und dynamisches Übertragungsverhalten von Messeinrichtungen.
- Fähigkeit, praxisübliche Sensoren / Aufnehmer auswählen, einsetzen und anwenden zu können.
- Kenntnisse über die Kalibrierung/Justierung von Aufnehmern / Messketten
- Kenntnisse über wichtige messtechnische Auswertemethoden
- Fähigkeit, mögliche Abweichungen in der Messtechnik und deren Einbezug in die Messergebnisanalyse beurteilen zu können.
- Fähigkeiten zur selbstständigen Signalauswertung
- Verständnis für den Einsatz kommerzieller rechnergestützter Erfassungssysteme.
- Fähigkeit, Arbeitsergebnisse im Team zu kommunizieren und zu präsentieren.

Verwendbarkeit

B-BM. B-FZT. B-ERT

Literatur

Parthier, R: Messtechnik, Vieweg-Verlag

Mühl, Th: Einführung in die elektrische Messtechnik, Teubner-Verlag

Hoffmann, J: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig

Bantel, M.: Grundlagen der Messtechnik (Messunsicherheit von Messung und Messgerät),

Fachbuchverlag Leipzig

Bantel, M: Messgeräte-Praxis, Fachbuchverlag Leipzig

Schrüfer: Elektrische Meßtechnik, Hanser Verlag, München

Karrenberg, U.: Signale, Prozess, Systeme - Eine multimediale und interaktive Einführung in die

Signalverarbeitung, Springer

Wika: Handbuch: Druck- und Temperaturmesstechnik, Wiegand GmbH, Klingenberg

Schiessle, E.: Industriesensorik - Automation, Messtechnik, Mechatronik, Vogel Verlag

DIN 1319: Grundlagen der Messtechnik, Teil 1 bis 4

Data Science

Leistungspunkte	Leistungsnachweis	Lehrform / SWS			Arbeitsaufwand / h		
5	schPr 90 min,	SU	2		Gesamt	150	
	StA (mE/oE)	Ü	2		Präsenz	60	
Modulverantwortlich	Dozentin / Dozent	Pr	-		Eigenstudiu	90	
					m		
Prof. Dr. Menz	Prof. Dr. Menz						
Dauer	Häufigkeit d. Angebots	Sprach	Sprache		Prüfungsnumm	nmer	
1 Semester	Jedes Semester	Deutscl	Deutsch		1500		

Empfohlene Voraussetzungen

Ingenieurmathematik I (lineare Algebra), Informatik (Kontrollstrukturen, Datentypen, Operationen)

Inhalt

- Data Science Begriffe, Einordnung und Historie (Data Mining, Data Science, Analytics, Maschinelles Lernen, Künstliche Intelligenz)
- Rolle von Data Science in industriellen Prozessen und zukünftigen Geschäftsszenarien (Use Cases, Digitalisierung, I 4.0)
- Grundlagen der Mathematik (Matrizen, Vektoren), Statistik (Verteilungen, Momente) und Programmierung (R, Python Bibliotheken)
- Vorgehensmodelle f
 ür Data Science Projekte (KDD, CRISP-PM, DASC-PM v1.0)
- Datentypen, Datenquellen, Datenqualität, Datenaufbereitung
- Grundlegende Verfahren (Supervised, Unsupervised Semi Supervised, Reinforcement Learning, ...) und deren Charakteristika und Anwendungsfelder
- Durchführung eines Data Science Projektes für ausgewählte Fragestellungen aus dem Maschinenbau

Qualifikationsziel

- Kennen potenzieller Anwendungsfelder im Maschinenbau und relevanter Verfahren zur Erkenntnisgewinnung aus Daten
- Verstehen der Aufbereitung von Daten für die Analyse und der Unterschiede und Anwendungsgrenzen der verschiedenen Verfahren
- Auswahl und Anwenden geeigneter Data-Science-Verfahren für gegebene Fragestellung und zur Verfügung stehender Datengrundlagen / -qualitäten
- Evaluieren und Bewerten von Verfahren unter Einbeziehung von Domänen-Know-how
- Eigenständige Bearbeitung eines Data Science Projektes inkl. Validierung

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

O'Reilly: Einführung in Data Science, Joel Gruns

O'Reilly: Einführung in Machine Learning with Python

Maschinendynamik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60
Prof. Dr. Ertz	Prof. Dr. Ertz und Dozentenpool	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier
1 Semester	Jedes Semester	Deutsch		5090	

Empfohlene Voraussetzungen

Technische Mechanik I-III, Ingenieurmathematik I-II

Inhalt

Modellbildung bei schwingungsfähigen mechanischen Systemen, Grundlagen der Schwingungstechnik, Schwingungen mit einem und mehreren Freiheitsgraden, freie und erzwungene Schwingungen, gedämpfte Schwingungen, Aufstellung und Lösung der Bewegungsgleichungen, Schwingungstilgung.

Qualifikationsziel

Kenntnis der Wechselwirkungen von Kräften und Bewegungen bei Schwingungssystemen, Fähigkeit zur Lösung maschinendynamischer Probleme mit Hilfe rechnerischer Methoden, Einblick in die dynamische Auslegung von Maschinen.

Verwendbarkeit

B-MB, B-FZT, B-ERT

- H. Dresig, F. Holzweißig: Maschinendynamik. Springer-Verlag.
- R. Gasch, K. Knothe, R. Liebich: Strukturdynamik. Springer Vieweg.
- D. Gross u. a.: Technische Mechanik 3. Springer Vieweg.
- M. Knaebel, H. Jäger, R. Mastel: Technische Schwingungslehre. Teubner-Verlag.

Projekt aus der Fahrzeugtechnik II

Leistungspunkte	Leistungsnachweis	Lehrfor	m / SWS	Arbeitsaufwand / h		
5	Studienarbeit	SU	0,5	Gesamt	150	
Modulverantwortlich	Dozent*in	Ü	3	Präsenz	55	
Prof. Dr. Grau / N.N.	Prof. Dr. Grau und Kolleg*innen	Pr	-	Eigenstudium	95	
Dauer	Häufigkeit d. Angebots	Sprache	е			
1 Semester	Jedes Semester	Deutsch)			

Empfohlene Voraussetzungen

 $Konstruktion \ I\text{-}II; \ Technische \ Mechanik \ I\text{-}III; \ Werkstoffkunde;$

Maschinenelemente I-II; Spanende Fertigung

Inhalt

- Einführung in den Produktentstehungsprozess der Fahrzeugtechnik
- Einführung in die Patenrecherche
- Methodisches Zerlegen der unstrukturierten Aufgabenstellung in kleine Arbeitspakete (Lastenheft, Schnittstellendefinition, Arbeitspaketbeschreibung, ...)
- Darstellen der Ideenfindungsprozesse und das praktische Üben in Einzel- und Gruppenarbeit
- Anwenden von Präsentationstechniken zur Darstellung der erarbeiteten Lösungsansätze für das Konstruktionsprojekt
- Einbinden von komplexen Maschinenelementen (Zahnräder, Kupplungen, Lager, ...) in ein Konstruktionsprojekt aus dem Bereich der Fahrzeugtechnik, z. B. Getriebe, Radaufhängungen, Aktuatoren
- Darstellung der Einbindung des Konstruktionsprozesses in den gesamten Life Cycle Prozess und der damit verbundenen interdisziplinären Produktentwicklung
- Erstellen der verschiedenen technischen Unterlagen (Spezifikationen, Einzelteilzeichnungen, Baugruppenzeichnungen, Montagebeschreibungen, Bedienungsanleitungen, ...) und praktisches Darstellen der Möglichkeiten zur rechnergestützten Verwaltung dieser Dokumente

Qualifikationsziel

- Fähigkeit zur methodischen Erarbeitung von Lösungsvarianten für komplexe Konstruktionsprojekte in Gruppenarbeit
- Kompetentes Präsentieren technischer Lösungen
- Fähigkeit, das Wissen aus den Grundlagenmodulen am Beispiel einer komplexen Konstruktionsaufgabe umzusetzen
- Erkennen der Vor- und Nachteile von selbstständiger Einzelarbeit im Vergleich zur Teamarbeit
- Fähigkeit zur Bearbeitung einer unstrukturierten Aufgabenstellung mit der Zielsetzung einer fertigungsgerechten Baugruppenkonstruktion
- Fertigkeit in der Erstellung von technischen Produktdokumentationen und in der Berechnung getriebebezogener Maschinenelemente
- Erkennen, dass das Konstruieren ein interdisziplinärer Prozess ist, der mit den Methoden des "Simultaneous Engineerings" und des "Concurrent Engineerings" abgearbeitet wird

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

Tabellenbuch Metall. - Europa-Fachbuchreihe für Metallberufe. Europa Lehrmittel Verlag

Roloff/Matek: Maschinenelemente. Vieweg

Ehrlenspiel: Integrierte Produktentwicklung. Hanser

Straßenfahrzeuge

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min, StA	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Grau	Prof. Dr. Grau	Pr	1	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ier
1 Semester	Jedes Semester	Deutsch		6140	

Empfohlene Voraussetzungen

Technische Mechanik I-III, Maschinendynamik

Inhalt

Seminaristischer Unterricht:

 Grundbegriffe der Straßenfahrzeuge bezüglich der Fahrzeug- und Fahrwerksgeometrie und Fahrwerktechnik, Konzepte verschiedener Fahrzeuge und deren tragender Strukturen. Vorstellung aktueller Konzepte und Konstruktionen im Bezug auf Funktion und Kosten. Vorstellung wichtiger Komponenten und Systeme und deren Einbindung in das Gesamtfahrzeug. Entwicklungsprozesse der Fahrzeugindustrie.

Praktikum: Viertelfahrzeug und Fahrversuch

• Experimentelle Erfassung der Vertikal, -Längs- und Querdynamik an einem Versuchsfahrzeug und Viertelfahrzeugprüfstand. Untersuchung von Einflussgrößen auf Fahrverhalten und Vertikaldynamik

Qualifikationsziel

Seminaristischer Unterricht:

- Kenntnis der gängigen Fachbegriffe und Kenngrößen
- Kenntnis der gängigen und aktuellen Aufbauten und Radaufhängungen,
- Kenntnisse über grundlegende Komponenten und Fahrzeugsysteme und der jeweils geltenden gesetzliche Rahmenbedingungen
- Fähigkeit zur Beurteilung von Fahrzeugkonzepten und Radaufhängungen in Bezug auf Quer-, Längsund Vertikaldynamik.
- Kenntnis des Entwicklungsprozesses der Straßenfahrzeuge

Praktikum

- Kenntnis wichtiger Messverfahren aus dem Bereich der Straßenfahrzeuge.
- Fähigkeit zur selbstständigen Erarbeitung von Versuchsprogrammen und zielorientierten Durchführung von Versuchen.
- Fähigkeit, Arbeitsergebnisse im Team zu kommunizieren und zu präsentieren.

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

Literatur

Haken, Grundlagen der Fahrzeugtechnik

Bosch: Kraftfahrtechnisches Taschenbuch

Braess, Seifert: Handbuch Kraftfahrzeugtechnik

Reimpell: Fahrwerktechnik, Klein, B.: Leichtbau-Konstruktion, Friedrich Vieweg und Sohn,

Braunschweig/Wiesbaden

Heißing et al.: Fahrwerkhandbuch

Elektrische Antriebe (mit Praktikum)

Leistungspunkte	Leistungsnachweis	Lehrforn	n/SWS	Arbeitsaufwand / h	
5	schPr 90 min,	SU	3	Gesamt	150
	TN, VB, Kol.	Ü	-	Präsenz	75
Modulverantwortlich	Dozentin / Dozent	Pr	2	Eigenstudiu	75
				m	
Prof. Dr. Krejtschi	Prof. Dr. Krejtschi				
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ner
1 Semester	Jedes Semester	Deutsch		1540	

Empfohlene Voraussetzungen

Physik, Ingenieurmathematik I-II, Elektrotechnik

Inhalt

- Grundlagen zur Physik von elektrischen Maschinen
- Funktionsweise von Gleichstrom- Asynchron- und permanent erregten Synchronmaschinen
- Kriterien zur Auswahl elektrischer Maschinen

Qualifikationsziel

- Grundlegende Kenntnisse der Funktionsweise und Eigenschaften der wichtigsten elektrischen Maschinen
- Fähigkeit zur Auswahl einer elektrischen Maschine für den Einsatz im Maschinenbau

Verwendbarkeit

B-MB, B-FZT

Literatur

Schönfeld: Elektrische Antriebe, Springer Verlag

Schröder: Elektrische Antriebe-Grundlagen, Springer Verlag Leonhard: Regelung Elektrischer Antriebe, Springer Verlag

Regelungs- und Steuerungstechnik (mit Praktikum)

Leistungspunkte	Leistungsnachweis	Lehrforn	Lehrform / SWS		hrform / SWS Arbeitsaufw		Arbeitsaufwan	d / h
5	schPr 90 min,	SU	3		Gesamt	150		
	TN, VB, Kol	Ü	-		Präsenz	75		
Modulverantwortlich	Dozentin / Dozent	Pr	2		Eigenstudiu	75		
					m			
Prof. Dr. Schmitt-	Prof. Dr. Schmitt-							
Braess	Braess							
Dauer	Häufigkeit d. Angebots	Sprache	Sprache		Prüfungsnumm	ier		
1 Semester	Jedes Semester	Deutsch	1		1550			

Empfohlene Voraussetzungen

Ingenieurmathematik I + II, Physik

Inhalt

- Darstellungsmethoden in der Regelungstechnik
- Ermittlung von Regelstrecken-Kennwerten
- Aufbau und Einstellung von einfachen Regelkreisen
- Regelungen im Frequenzbereich und im Zustandsraum
- Entwurf von Steuerungen

Qualifikationsziel

- Überblick über Automationssysteme und deren Einsatz in der Praxis
- Kenntnisse der wichtigsten Komponenten von Regelungs- und Steuerungssystemen
- Fähigkeit zur selbstständigen Lösung regelungs- und steuerungstechnischer Probleme des Maschinenbaus, insbesondere Reglerauswahl und -einstellung.
- Fähigkeit, Arbeitsergebnisse im Team zu kommunizieren und zu präsentieren.

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Jürgen Bechtloff: Regelungstechnik, Vogel Buchverlag, Würzburg.

Herbert Schlitt: Regelungstechnik, Vogel Buchverlag, Würzburg.

Jan Lunze: Regelungstechnik 1+2, Springer Verlag, Heidelberg.

Praxissemester

Betreutes Praktikum

Leistungspunkte	Leistungsnachweis	Lehrform /	SWS	Arbeitsaufwand /	
22		SU	-	Gesamt	660
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	
Prof. Dr. Felderhoff	Dozentenpool	Pr	-	Eigenstudiu m	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	er
1 Semester	Jedes Semester	Deutsch		3200	

Empfohlene Voraussetzungen

- alle 60 Leistungspunkte aus den Semestern 1 und 2 und
- 2. 40 Leistungspunkte aus den Semestern 3 und 4

In Härtefällen, insbesondere bei Auslandspraktika, kann die Prüfungskommission auf Antrag Ausnahmen nach Art und Umfang von Ziffer 2. vornehmen.

Inhalt

Aus den nachfolgend aufgeführten Gebieten sollten mehrere Bereiche ausgewählt werden:

- Entwicklung, Projektierung, Konstruktion
- Fertigung, Fertigungsvorbereitung und -steuerung
- Montage, Betrieb und Unterhaltung von Maschinen und Anlagen
- Prüfung, Abnahme, Fertigungskontrolle
- Vertrieb und Beratung

Qualifikationsziel

- Fähigkeit zur Bearbeitung konkreter Ingenieurprojekte und Aufgabenstellungen im betrieblichen
 Limfold
- Fähigkeit zum sachkundigen Durchdenken von Vorgängen, Verfahren
- und Problemen im Betrieb.
- Fähigkeit zur Erarbeitung von Entscheidungsgrundlagen unter Berücksichtigung technischer und wirtschaftlicher Gesichtspunkte.
- Förderung sozialer Kompetenzen (Kommunikation, Teamarbeit, etc.)
- Fähigkeit zur Dokumentation und Präsentation von Arbeitsergebnissen

Verwendbarkeit

B-MB, B-FZT, B-ERT

Praxisseminar

Leistungspunkte	Leistungsnachweis	Lehrfo	rm / SWS	Arbeitsaufwan	d / h
1	Kol., StA	SU	2	Gesamt	60
Modulverantwortlich	Dozent*in	Ü	-	Präsenz	30
Prof. Dr. Felderhoff	Dozentenpool	Pr	-	Eigenstudiu	30
				m	
Dauer	Häufigkeit d. Angebots	Sprach	ie		
1 Semester	Jedes Semester	Deutsc	h		

Empfohlene Voraussetzungen

- 1. alle 60 Leistungspunkte aus den Semestern 1 und 2
- 2. 40 Leistungspunkte aus den Semestern 3 und 4

In Härtefällen, insbesondere bei Auslandspraktika, kann die Prüfungskommission auf Antrag Ausnahmen nach Art und Umfang von Ziffer 2. vornehmen.

Inhalt

Erfahrungsaustausch, Anleitung und Beratung, Vertiefung und Sicherung der Erkenntnisse, insbesondere durch Kurzreferate der Studierenden über ihre praktische Arbeit, durch Fragestellung und Diskussion, durch Aufgabenstellung und Erläuterung.

Qualifikationsziel

- Fähigkeit zur Bearbeitung konkreter Ingenieurprojekte und Aufgabenstellungen im betrieblichen
 Limfeld
- Fähigkeit zum sachkundigen Durchdenken von Vorgängen, Verfahren
- und Problemen im Betrieb.
- Fähigkeit zur Erarbeitung von Entscheidungsgrundlagen unter Berücksichtigung technischer und wirtschaftlicher Gesichtspunkte.
- Förderung sozialer Kompetenzen (Kommunikation, Teamarbeit, etc.)
- Fähigkeit zur Dokumentation und Präsentation von Arbeitsergebnissen

Verwendbarkeit

B-MB, B-FZT, B-ERT

Technisches Englisch

Leistungspunkte	Leistungsnachweis	Lehrfo	rm / SWS	Arbeitsaufwand / h	
2	schPr 60 min, Ref. 10-20 Min, StA	SU	2	Gesamt	60
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	30
Prof. Dr. Monz	Prof. Vrzina und Dozentenpool	Pr	-	Eigenstudiu m	30
Dauer	Häufigkeit d. Angebots	Sprach	ne	Prüfungsnumm	ner
1 Semester	Jedes Semester	Engliso	ch	3500	

Empfohlene Voraussetzungen

Grundkenntnisse Englisch (Schulenglisch)

Inhalt

- Industrierelevante schriftliche und mündliche Textsorten im Englischen
- Beschreibung von technischen Prozessen
- Moderne Technologien und Entwicklungen
- Verfassen von E-Mails nach konkreten Beschreibungen kommunikativer Situationen
- Wortkunde der fachsprachlichen Termini
- Häufige Fehlerquellen
- Grammatik

•

Qualifikationsziel

Wissen

- Einblick in die syntaktischen Schwierigkeiten der englischsprachigen Fachliteratur
- Überblick über die textsortenspezifischen Ausdrucksweisen
- Kenntnis der Thematik "Englisch in technischen und wissenschaftlichen Berufen"
- · Vertrautheit mit wichtigen in der Industrie häufigen Situationen, in denen Englisch verlangt wird

Können

- Fähigkeit zur Erschließung von Fachtexten
- Fertigkeit in der Vermeidung von häufig vorkommenden Missverständnissen
- Beherrschung wesentlicher Sprachfertigkeiten mit Schwerpunkt auf dem aktiven (Sprechen und Schreiben)

Erkennen

- Bewusstsein von häufigen Fehlerquellen
- Einsicht in Lösungsstrategien
- Verständnis alternativer Lösungen

Werten

 Aufgeschlossenheit gegenüber sprachkundlichen Überlegungen; Bereitschaft zu lebenslangem Vertiefen der Englischkenntnisse

Verwendbarkeit

B-MB, B-FZT, B-ERT

Betriebsführung

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h		
5	schPr 60 min, StA	SU	4	Gesamt	150	
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60	
Prof. Dr. Monz	Prof. Dr. Monz und Dozentenpool	Pr	-	Eigenstudiu m	90	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	Prüfungsnummer	
1 Semester	Jedes Semester	Deutsch		3410		

Empfohlene Voraussetzungen

Keine

Inhalt

- Einführung in die Betriebswirtschaft
- Aufbau- und Ablauforganisation
- Kosten- und Leistungsrechnung
- Marketing, Finanzierung
- Fertigungsprinzipien, Prozessmanagement, Produktionsplanung und -steuerung
- Entgeltrahmentarifvertrag, Normative Grundlagen und Organisation und der Arbeitssicherheit,
- CE-Kennzeichnung und Maschinenrichtlinie, Patentrecht

Qualifikationsziel

- Grundlegende Kenntnisse der allgemeinen Betriebswirtschaft
- Kenntnis unterschiedlicher Modelle der Unternehmensorganisation
- Kenntnis von Verfahren der Kosten- und Leistungsrechnung und Überblick über die Finanzierung von Betrieben
- Fähigkeit zur Anwendung grundlegender Marketinginstrumente
- Überblick über die Organisation von Industriebetrieben sowie Fähigkeit, die Inhalte technischer Fächer in den betrieblichen Ablauf einordnen zu können
- Kenntnis der Ziele zur Produktionsvorbereitung und zur Fertigungssteuerung
- Fähigkeit zur Bewertung von Arbeitssystemen und sicherheitstechnischen Erfordernissen.
- Überblick über das Gebiet der Sicherheitstechnik und des Arbeitsschutzes
- Kenntnis grundlegender Rechtsnormen in der Ingenieursarbeit

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

Wiendahl: Betriebsorganisation für Ingenieure, Hanser Verlag

Wenzel: Industriebetriebslehre, Fachbuchverlag Leipzig

Kern: Einführung in den Arbeitsschutz, Hanser Verlag.

Module der Vertiefungsrichtungen

Leistungspunkte	Leistungsnachweis	Lehrform / SWS	Arbeitsaufwand / h
30	schPr 90 min		Gesamt 900
Modulverantwortlich	Dozentenpool		
Dauer	Häufigkeit d. Angebots	Sprache	Prüfungsnummer
1 Semester	Jedes Semester	Deutsch	

Die Module und Modulbeschreibungen der Vertiefungsrichtungen sind in der Anlage, am Ende dieses Modulhandbuches, aufgeführt.

Technisches Querschnittswissen (Fachwissenschaftliches Wahlpflichtfach 1 + 2)

Leistungspunkte	Leistungsnachweis	Lehrform /	sws	Arbeitsaufwand / h	
10	*)	SU	*)	Gesamt	300
Modulverantwortlich	Dozentin / Dozent	Ü		Präsenz	
Prof. Dr. Schmitt- Braess	Dozentenpool	Pr		Eigenstudiu m	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	er
1 Semester	Jedes Semester	Deutsch			

Empfohlene Voraussetzungen

*)

Inhalt

*) Der Katalog der Fachwissenschaftlichen Wahlpflichtmodule (Teilmodule) wird vom Fakultätsrat für jedes Folgesemester beschlossen und hochschulöffentlich bekannt gegeben. Die detaillierten Festlegungen zu den einzelnen Teilmodulen sind in diesem Katalog angegeben. Die Prüfungskommission kann auf Antrag auch entsprechende Teilmodule außerhalb des Fakultätsangebots zulassen.

Qualifikationsziel

Vermittlung von themenübergreifenden Kompetenzen und Fähigkeiten, die die ingenieurwissenschaftlichen Grundlagen je nach Neigung und fachlicher Ausprägung/Vertiefung ergänzen und/oder vertiefen.

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

*)

Allgemeinwissenschaftliches Wahlpflichtfach

Jedes Semester

Leistungspunkte	Leistungsnachweis	Lehrform /	SWS	Arbeitsaufwand / h	
5	*)	SU	*)	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü		Präsenz	
Prof. Dr. Ertz	Dozentenpool	Pr		Eigenstudiu	
				m	
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	er

Deutsch

Empfohlene Voraussetzungen

*)

Inhalt

1 Semester

*) Der Katalog der Allgemeinwissenschaftlichen Wahlpflichtmodule (Teilmodule) wird von der Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften (AMP) der Technischen Hochschule Nürnberg Georg Simon Ohm geführt. Die detaillierten Festlegungen einschließlich möglicher Wahleinschränkungen zu den einzelnen Teilmodulen sind in diesem Katalog angegeben. Die Prüfungskommission kann auf Antrag auch entsprechende Teilmodule außerhalb des Fakultätsangebots zulassen.

Qualifikationsziel

Übergeordnet: Vermittlung von fachübergreifenden Kompetenzen und Fähigkeiten, die das berufliche Handeln unter Berücksichtigung der beruflichen Grundsätze und Normen unterstützen. Fähigkeit fremdsprachlich und interkulturell zu kommunizieren

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

*)

2) Abschlussprojekt

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
15		SU	-	Gesamt	450
Modulverantwortlich	Dozent*in	Ü	-	Präsenz	
	*1	Pr	-	Eigenstudium	
Dauer	Häufigkeit d. Angebots	Sprache			
1 Semester	Jedes Wintersemester	Deutsch	1		

Empfohlene Voraussetzungen

Alle 120 LP aus den ersten 4 Semestern abgeschlossen.

Erfolgreiche Ableistung des praktischen Teils des praktischen Studiensemesters sowie die nachgewiesene Teilnahme an einer mehrtägigen Fernexkursion oder ersatzweise drei Tagesexkursionen. Entsprechende Exkursionen werden von der Fakultät im Rahmen der Exkursionswoche des 4. Fachsemesters angeboten.

Inhalt

Das Abschlussprojekt besteht aus

- Der Bachelorarbeit (12 Leistungspunkte)
- Der Projektbesprechung mit Abschlusspräsentation*² (3 Leistungspunkte)

Die Bachelorarbeit ist eine selbständig angefertigte, wissenschaftliche Arbeit und enthält z.B. Lösung technisch-wissenschaftlicher Aufgaben, Neu- und Weiterentwicklung technischer und organisatorischer Systeme auf den Arbeitsfeldern des Maschinenbaus.

Qualifikationsziel

Die Bachelorarbeit soll die Fähigkeit zu selbständigen wissenschaftlichen Arbeiten, speziell zur selbständigen wissenschaftlichen Lösung eines Problems auf dem Gebiet des Maschinenbaus zeigen.

Weitere Lernziele/ -ergebnisse sind (je nach Thema):

- Fähigkeit zur Analyse und Lösungsfindung
- Fähigkeit zur Anwendung wissenschaftlich fundierter Methoden
- Fähigkeit zur Durchführung von Recherchen
- Fähigkeit zur Auswahl und Anwendung passender Analyse, Modellierungs-, Simulations- und Optimierungsmethoden
- Fähigkeit zur Planung, Durchführung und Steuerung von Prozessen und Anlagen
- Fähigkeit zur Wissensvertiefung
- Erkennen der Tragweite der Ingenieurtätigkeit
- Fähigkeit zur Dokumentation und Präsentation von Arbeitsergebnissen.
- Förderung sozialer Kompetenzen (z.B. Kommunikation, Teamarbeit etc.)

Verwendbarkeit

B-BM, B-FZT, B-ERT

Literatur

aufgabenspezifische Literatur

*1

Professoren des Studiengangs Maschinenbau.

Die Bachelorarbeit darf auch in einer Einrichtung außerhalb der Hochschule ausgeführt werden, wenn sie dort durch einen Prüfer der Hochschule betreut werden kann.

*2

Neben der selbst zu haltenden Abschlusspräsentation ist der Besuch von weiteren 7 Abschlusspräsentationen von Kommilitonen nachzuweisen.

3. Anlage (Module der Vertiefungsrichtung)

Kolbenmaschinen

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60
Prof. Dr. Bikas	Prof. Dr. Bikas	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ner
1 Semester	Jedes Semester	Deutsch		6070	

Empfohlene Voraussetzungen

Grundkenntnisse in Technischer Thermodynamik, Technischer Mechanik, Technischer Strömungsmechanik und Wärmeübertragung

Inhalt

- Eigenschaften der Kolbenmaschinentriebwerke, Triebwerksarten, Motorkenngrößen.
- Kinematik des Kurbeltriebs, Trägheitskräfte, Gaskräfte und Drehmoment.
- Thermodynamik des Verbrennungsmotors
- Eigenschaften von gas- und flüssigförmigen Kraftstoffen und Thermochemie
- Arbeitsverfahren, Idealprozesse,
- Prozesse der vollkommenen Maschine
- Strömungsprozesse: Zylinderfüllung, Ladungsbewegung, Aufladung, Ventilsteuerung, genauere konstruktive Durcharbeitung ausgewählter Baugruppen
- Gemischbildung (Indirekte- und Direkteinspritzung), Zündung und Verbrennungsprozesse, Betriebsverhalten
- Abgasemissionen und Überblick Abgasnachbehandlungstechnologien
- Zukunftskonzepte, e-fuels

Qualifikationsziel

- Überblick über die Möglichkeiten des Einsatzes von Verbrennungsmotoren (nach Anwendung: Leistung, Drehmoment, Kraftstoffverbrauch, Abgasemissionen)
- Kenntnis der Arbeitsweise und Überblick über die Prozesse,
- Fähigkeit, Kolbenmaschinen auslegungstechnisch berechnen und konstruktiv gestalten zu können.
- Kenntnis über Umweltaspekte des Verbrennungsmotors und Abgasnachbehandlung.

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Energietechnik und Fahrzeugtechnik, B-FZT, B-ERT

Energiespeicherung

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min	SU	4	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Uhrig	Prof. Dr. Uhrig	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnummer	
1 Semester	Jedes Sommersemester	Deutsch		6080	

Empfohlene Voraussetzungen

Naturwissenschaftl. Grundlagen, Ingenieurmathematik I-II, Werkstofftechnik, Technische Thermodynamik, Turbomaschinen, Wärmeübertragung

Inhalt

- Einführung in die Energiespeicherung
- Grundlagen der Energiespeicherung:
 - Größen
 - Bedarfsermittlung
- Elektrochemische Energiespeicher
 - Elektrolyse (PTX)
 - Stoffliche Speicherung (gasförmig, flüssig, fest)
 - Brennstoffzelle
 - Batterien
- Thermische Energiespeicher:
 - Physikalisch (Sensibel, Latent)
 - Chemisch
- Mechanische Energiespeicher
 - Gasförmige Medien (Druckluftspeicher)
 - Flüssige Medien (Pumpspeicherkraftwerk)
 - Feste Medien (Schwungrad, Lageenergiespeicher)

Qualifikationsziel

- Verständnis von Potenziale, Größen und die Einordnungen von Energiespeicher
- Beschrieben der gängigsten Methoden der Energiespeicherung zu benennen
- Bewertung der Anforderungen an einen Energiespeicher hinsichtlich Kapazität und Leistung
- Grobauslegung von Energiespeichern für einen spezifischen Anwendungsfall
- Benennen der Integrationsmöglichkeiten von Energiepeicher in die Sektorenkopplung

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Energietechnik und Fahrzeugtechnik, B-ERT

- M. Sterner et al., "Energiespeicher", Springer Vieweg Verlag
- P. Kurzweil et al., "Elektrochemische Speicher", Springer Vieweg Verlag
- M. Zapf, "Stromspeicher und Power-to-Gas im deutschen Energiesystem", Springer Vieweg Verlag
- A. Kampker et al., "Elektromobilität", Springer Vieweg Verlag, OPEN ACCESS

Technische Dynamik und Akustik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min, StA	SU	2	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60
Prof. Dr. Biedermann	Prof. Dr. Haas Prof. Dr. Biedermann	Pr	1	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache			
1 Semester	Jedes Semester	Deutsc	h		

Empfohlene Voraussetzungen

Ingenieurmathematik I-II, Technische Mechanik I-III, Maschinendynamik, Messtechnik

Inhalt

Fahrzeugdynamik (SU + Ü):

- Vertikaldynamik: Schwingungen am Fahrzeug, Federung, Dämpfung
- Querdynamik: Modellbildung, Einspurmodell, Fahrverhalten bei Kurvenfahrt
- Kontakt Reifen/Fahrbahn, Achs- und Radlasten

Technische Akustik (SU + Pr):

- Grundlagen der Akustik:
 Schallentstehung, Schallemission, Schallausbreitung, Schallimmission
- Akustische Messverfahren:
 Schalldruckmessung, Schallintensitätsmessung, Schallleistungsmessung, Bestimmung akustischer Kennwerte (Absorptionsgrad, Schalldämmmaß, Nachhallzeit, ...)

Qualifikationsziel

- Erwerb von Kenntnissen zur Kinematik, Statik und Kinetik von Fahrzeugen und zur Simulationstechnik
- Anwendung der Kenntnisse in der Fahrzeugauslegung und -optimierung
- Fähigkeit zur Anwendung von Fahrdynamikmodellen in der Simulation
- Erwerb von Kenntnissen über die wesentlichen physikalischen Grundlagen sowie die gesetzlichen Vorschriften im Zusammenhang mit typischen akustischen Aufgabestellungen.
- Fähigkeit zur selbstständigen Durchführung akustischer Messungen und Analysen.

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

- M. Mitschke, H. Wallentowitz: Dynamik der Kraftfahrzeuge, Springer Vieweg
- H-P. Willumeit: Modelle und Modellierungsverfahren in der Fahrzeugdynamik, Vieweg+Teubner
- S. Breuer, A. Rohrbach-Kerl: Fahrzeugdynamik, Springer Vieweg
- D. Schramm, M. Hiller, R. Bardini: Modellbildung und Simulation der Dynamik von Kraftfahrzeugen, Springer Vieweg
- J. Kahlert: Simulation technischer Systeme, Vieweg
- H. Henn, G. R. Sinambari, M. Fallen: Ingenieurakustik. Vieweg+Teubner
- H. Kuttruff: Akustik. S. Hirzel-Verlag
- K. Genuit: Sound-Engineering im Automobilbereich. Springer-Verlag

Fahrzeugantriebstechnik

Leistungspunkte	Leistungsnachweis	Lehrform	/SWS	Arbeitsaufwand / h	
5	schPr 90 min, StA	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Singer	Prof. Dr. Singer Prof. Dr. Grau	Pr	1	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnummer	
1 Semester	Jedes Semester	Deutsch		6100	

Empfohlene Voraussetzungen

Technische Mechanik I - III, Technische Strömungsmechanik, Konstruktion I - III

Inhalt

Seminaristischer Unterricht:

- Energiebereitstellung: Energieträger & Energiespeicher
- Bewegungswiderstände der Fahrzeuge
- Längskraftübertragung zwischen Rad und Fahrbahn
- Zugkraftdiagramme der Fahrzeuge
- Leistungsbemessung
- Komponenten des Antriebsstranges und ihre Eigenschaften
 - Antriebsmaschinen
 - Drehmoment- und Drehzahlwandlung
 - Leistungselektronik
 - Bordnetz und Ladekonzepte
- Zusammenwirken der Komponenten des Antriebsstranges
- Antriebsstränge der bodengebundenen Fahrzeuge
 - Konventionelle Antriebsstränge
 - Antriebstränge für Hybridfahrzeuge
 - Antriebsstränge für Elektrofahrzeuge
 - Antriebsstränge für wasserstoffbetriebe Fahrzeuge
- Betriebsstrategien
- Gesamtenergiebilanz und Verbrauch in Abhängigkeit vom Antriebsstrang

Praktikum:

Rollenprüfstand, Windkanal

Qualifikationsziel

- Kenntnis der wichtigsten Fachbegriffe und Kenngrößen
- Kenntnis des Aufbaus der Antriebsstränge bodengebundener Fahrzeuge und des Zusammenwirkens der verwendeten Komponenten
- Fähigkeit zur Auslegung von Antrieben der Straßen- und Schienenfahrzeuge
- Fähigkeit zur Beurteilung und Bewertung von Antriebskonzepten in Bezug auf Fahrleistung und Energieverbrauch

• Fähigkeit, Wirkzusammenhänge in Antriebssträngen zu identifizieren und Komponenten zu spezifizieren

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

Literatur

Babiel: Elektrische Antriebe in der Fahrzeugtechnik, Springer Vieweg

Förster: Die Kraftübertragung im Fahrzeug vom Motor bis zu den Rädern, TÜV Rheinland

Haken: Grundlagen der Kraftfahrzeugtechnik, Hanser

Klement: Fahrzeuggetriebe, Hanser

Mashadi, Crolla: Antriebsstrangsysteme in Kraftfahrzeugen, Wiley-VCH

Kraftfahrtechnisches Taschenbuch, Bosch

Pischinger et al.: Vieweg Handbuch Kraftfahrzeugtechnik, Springer Vieweg

Naunheimer et al.: Fahrzeuggetriebe, Springer Vieweg

Tschöke et al.: Elektrifizierung des Antriebsstrangs, Springer Vieweg Doppelbauer: Grundlagen der Elektromobilität, Springer Vieweg

Reif et al.: Kraftfahrzeug-Hybridantriebe, Springer Vieweg

Ihme: Schienenfahrzeugtechnik, Springer Vieweg

Fahrzeugelektronik und -software

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 60 min, StA	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Singer	Prof. Dr. Singer	Pr	1	Eigenstudiu	90
				m	
Dauer	Häufigkeit d. Angebots	Sprache			
1 Semester	Jedes Semester	Deutsch			

Empfohlene Voraussetzungen

Elektrotechnik, Regelungs- und Steuerungstechnik, Informatik

Inhalt

- Architektur mechatronischer Systeme im Kraftfahrzeug
- Bordnetze
- Bussysteme (z.B. CAN, Flexray, MOST, LIN, Automotive Ethernet)
- Applikation, Kalibration & Diagnose
- Kommunikation zwischen Fahrzeugen (Car2Car, Vehicle2X)
- Fahrzeugsensorik und -aktorik
- Steuergerätearchitektur
- Softwarearchitektur der Steuergeräte (inkl. AUTOSAR)
- Entwicklung und Test von mechatronischen Systemen im Kraftfahrzeug
- Funktionale Sicherheit
- Cyber Security
- Anwendungsbeispiele von elektronischen Systemen im Fahrzeug: z.B. Bremsregelung, Fahrerassistenzsysteme, ...
- Grundlagen modellbasierter Entwicklung
- Anwendung der modellbasierten Entwicklung mechatronischer Systeme mit MATLAB/Simulink

Qualifikationsziel

- Kenntnis der wichtigsten Fachbegriffe und Kenngrößen
- Kenntnis der Architektur mechatronischer Systeme im Kraftfahrzeug und des Zusammenwirkens der verwendeten Komponenten (Hardware, Software, Mechanik)
- Kenntnis der verschiedenen fahrzeuginternen und externen Kommunikationsmechanismen und deren Eigenschaften
- Fähigkeit, Methoden im Bereich der Entwicklung und dem Test mechatronische Systeme anwenden zu können
- Fähigkeit zur Beurteilung und Bewertung von mechatronischen Systemen hinsichtlich Funktionaler Sicherheit und Cyber Security
- Fähigkeit zur modellbasierten Softwareentwicklung mit MATLAB/Simulink

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

Literatur

Reif, K.: Automobilelektronik: Eine Einführung für Ingenieure. Springer Vieweg Verlag

Borgeest, K.: Elektronik in der Fahrzeugtechnik. Springer Vieweg Verlag

Schäuffele, J.; Zurawka, T.: Automotive Software Engineering. Springer Vieweg Verlag

Wolf, F.: Fahrzeuginformatik. Springer Vieweg Verlag

Zimmermann, W.; Schmidgall, R.: Bussysteme in der Fahrzeugtechnik. Springer Vieweg Verlag

Reif, K.: Batterien, Bordnetze und Vernetzung. Vieweg + Teubner Verlag

Ross, H.-L.: Funktionale Sicherheit im Automobil. Hanser Verlag

Leichtbau Konstruktion

Leistungspunkte	Leistungsnachweis	Lehrfo	rm / SWS	Arbeitsaufwand / h	
5	StA, Kol	SU	1	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	3	Präsenz	60
Prof. Dr. Grau	Prof. Dr. Grau und Dozentenpool	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprach	ne e	Prüfungsnummer	
1 Semester	Jedes Semester	Deutsc	h	6121	

Empfohlene Voraussetzungen

Maschinenelemente I-II, Technische Mechanik I-III, Konstruktion I-III, Kenntnisse in CAD

Inhalt

Am Beispiel praxisorientierter Konstruktionsaufgaben werden die folgenden Kenntnisse und Fähigkeiten erworben:

- Anwendung von Ansätzen der Konstruktionsmethodik: Ablaufplanung in der Konstruktion, Problemanalyse, Anwendung von Ideenfindungsmethoden, technische und wirtschaftliche Bewertung von Lösungen
- Kenntnisse über spezifische fahrzeugtechnische Probleme: Lastannahmen und konstruktive Einflussgrößen aus der Fahrzeugdynamik und Antriebstechnik
- Prinzipien und Strukturen des Leichtbaus
- Anwendung rechnergestützter Methoden zur beanspruchungsgerechten Bauteilgestaltung und Systemoptimierung
- Schnittstellenproblem Konstruktion-Berechnung, Arbeit mit Konstruktionsräumen.
- Arbeiten im Konstruktionsteam

Qualifikationsziel

- Kenntnis zum Entwicklungsprozess in der Fahrzeugtechnik nach dem V-Modell
- Fähigkeit zur Konzeption, Konstruktion und rechnergestützten Auslegung komplexer Baugruppen von Straßen- und Schienenfahrzeugen.
- Kenntnis der wichtigsten Prinzipien des Leichtbaus.
- Fähigkeit, Lösungen im Team zu erarbeiten und zu präsentieren.

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

Literatur

Pahl, G. und Beitz, W., Konstruktionslehre, Springer Verlag, Berlin

Ehrlenspiel, K., Kiewert, A. u. Lindemann, U: Kostengünstig entwickeln und konstruieren, Springer Verlag, Berlin

J. Wiedemann: Leichtbau, Bd.1 Elemente, Bd.2 Konstruktion, Springer-Verlag

Klein, B.: Leichtbau-Konstruktion, Friedrich Vieweg und Sohn, Braunschweig/Wiesbaden

Klein, B.: Übungen zur Leichtbau-Konstruktion, Friedrich Vieweg und Sohn, Braunschweig/Wiesbaden

Schienenfahrzeuge Grundlagen

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 min, StA	SU	3	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	1	Präsenz	60
Prof. Dr. Schaal	Prof. Dr. Schaal	Pr	-	Eigenstudiu	90
				m	
Dauer	Häufigkeit d. Angebots	Sprache			
1 Semester	Jedes Semester	Deutsch			

Empfohlene Voraussetzungen

Technische Mechanik I-III, Maschinenelemente I-II, Konstruktion I-II

Inhalt

Seminaristischer Unterricht:

- Das Bahnsystem (Geschichtliche Entwicklung, Bauarten der Schienenfahrzeuge, Grundlegender Aufbau der Fahrzeuge, gesetzliche Bestimmungen, Zulassung)
- Rad-Schiene-Kontakt (Rad- und Schienenprofile, Spurführungsmechanik in der Geraden, quasistatischer Bogenlauf, Sicherheit gegen Entgleisen, Übung: Rad-Schiene-Kräfte)
- Fahrwerke der Schienenfahrzeuge (Radsätze, Radsatzführung, Drehgestellanlenkung, Laufwerksauslegung, Bauarten, Übung: Radsatzentlastung)
- Konstruktion und Berechnung der Fahrzeugaufbauten (Anforderungen, Zug- und Stoßeinrichtungen, Dimensionierung, Konstruktionsmerkmale, Übung: Auslegung der Sekundärstufe einer Federung)
- Bremsen der Schienenfahrzeuge (Abstandshaltetechniken, Druckluftbremsanlagen, Mechanischer Teil der Bremsen, Übung: Bremsberechnung)
- Mensch-Maschine-Schnittstellen (Sicherheitseinrichtungen, Schutzeinrichtungen, Führerstände)
- Fahrzeugkonzepte (Straßenbahnen, U-Bahnen, Triebzüge, Lokomotiven, Reisezugwagen, Güterwagen)
- Instandhaltung

Praktikum/Studienarbeit:

- Entwicklung von Komponenten des Railway-Challenge Fahrzeugs, Versuch Wellenlauf, Versuch Rad-Schiene-Kontakt
- Entwicklung, Konstruktion und Berechnung Fahrwerk und Aufbau, Ermittlung des Zusammenhangs zwischen Konizität, Raddurchmesser, Spurweite und Wellenlänge. Zuordnung der Berührpunkte mit Radprofilmessung, Berührpunktvorverlagerung

Qualifikationsziel

- Kenntnis der wichtigsten Fachbegriffe und Kenngrößen
- Kenntnis der Spurführungsprinzipien, klassischer und alternativer Fahrwerke sowie deren Komponenten, der Radaufhängungen, maßgeblicher Komponenten und Fahrzeugsysteme
- Fähigkeit zur Beurteilung und Bewertung von Fahrzeug- und Fahrwerkkonzepten in Bezug auf Höchstgeschwindigkeit, Bogenlauffähigkeit, Verschleiß und Komfort
- Fähigkeit, Wirkzusammenhänge im System Bahn zu identifizieren und Komponenten zu spezifizieren
- Fähigkeit, unterschiedliche Anforderungen an Stadtbahn-, Straßenbahn-, Fernverkehrs- und Güterverkehrsfahrzeuge zu formulieren
- Fähigkeit, einen Strukturentwurf unter Berücksichtigung schienenfahrzeugspezifischer Randbedingungen und Anforderungen auszuarbeiten

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik, B-FZT

Literatur

DIN-Taschenbuch 491/1: Schienenfahrzeuge 1, Radsätze Fontanel, Christeller: Rolling Stock in the Railway System

Ihme: Schienenfahrzeugtechnik

Iwnicki: Handbook of Railway Vehicle Dynamics

Janicki: Bremstechnik und Bremsproben Knothe, Stichel: Schienenfahrzeugdynamik Pachl: Systemdynamik des Schienenverkehrs

Sachs: Elektrische Triebfahrzeuge Salander: Das europäische Bahnsystem Schindler: Handbuch Schienenfahrzeuge

Wende: Fahrdynamik

Mechatronik mit MATLAB/Simulink-Praktikum

Leistungspunkte	Leistungsnachweis	Lehrfor	m/SWS	Arbeitsaufwand / h	
5	schPr 60 min, StA	SU	2	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Schmitt- Braess	Prof. Dr. Schmitt- Braess	Pr	2	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache		Prüfungsnumm	ner
1 Semester	Jedes Semester	Deutsch	h	6150	

Empfohlene Voraussetzungen

Ingenieurmathematik I-II, Elektrische Antriebe, Technische Mechanik III, Messtechnik, Regelungs- und Steuerungstechnik, Numerische Methoden

Inhalt

- Aktoren und Sensoren
- Modellbildung von Mehrkörpersystemen (Kinematik und Kinetik)
- Beschreibungsmöglichkeiten für mechatronische Systeme (Linearisierung, Zustandsraumdarstellung, Laplace-Transformation, Übertragungsfunktion, Frequenzgang)
- Regelung mechatronischer Systeme
- Simulation dynamischer Systeme
- Arbeiten mit dem Softwarepaket MATLAB/Simulink und insbesondere mit den Toolboxen "Control System Toolbox", "Symbolic Math Toolbox", "Simulink Control Design"

Qualifikationsziel

- Erwerb von Kenntnissen über das Zusammenwirken von Elektrotechnik, Informationstechnik und Maschinenbau an ausgewählten Beispielen
- Kenntnisse über ausgewählte Sensoren und Aktoren der Mechatronik
- Fähigkeit zur Abstraktion und Beschreibung mechatronischer Teil- und Verbundsysteme (bestehend aus Antrieben, Maschine, Sensorik und Regelung/Steuerung)
- Fähigkeit, mechatronische Systeme durch regelungstechnische Maßnahmen gezielt zu beeinflussen
- Erwerb von Kenntnissen im Bereich der Dynamiksimulation
- Fertigkeit zur Anwendung von MATLAB/Simulink und ausgewählter Toolboxen zum Lösen von Aufgabenstellungen aus den oben genannten Bereichen

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Konstruktion und Entwicklung sowie Fahrzeugtechnik

Literatur

Bodo Heimann, Wilfried Gerth und Karl Popp: Mechatronik: Komponenten - Methoden - Beispiele, Carl Hanser Verlag, München Wien.

H. Lutz, W. Wendt: Taschenbuch der Regelungstechnik mit MATLAB und Simulink, Europa-Lehrmittel,

Haan.

FEM-Simulation

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	StA, Kol.	SU	2	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Ertz	Prof. Dr. Ertz und Dozentenpool	Pr	2	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprach	ie		
1 Semester	Jedes Semester	Deutsc	h		

Empfohlene Voraussetzungen

Ingenieurmathematik I-II, Numerische Methoden, ingenieurwissenschaftliche Grundlagenfächer (Technische Mechanik I-III, Maschinendynamik, Wärmeübertragung)

Inhalt

- Grundgleichungen und Randbedingungen bei Berechnungsaufgaben in Strukturmechanik und Wärmeleitung, analytische Lösungen für einfache Fälle, Energieprinzipien.
- Durchführung von FEM-Berechnungen im Bereich der Strukturmechanik und Temperaturfeldanalyse mit einem kommerziellen FEM-Softwareprogramm: Übertragung der CAD-Geometrie, Materialdaten, Vernetzung, Lasten und Randbedingungen, Steuerung des Berechnungsablaufes, unterschiedliche Analysearten, Auswertung und Beurteilung der Ergebnisse, Vergleich der Ergebnisse mit analytischen Überschlagsrechnungen

Qualifikationsziel

- Fertigkeit in der praktischen Anwendung der Finite-Elemente-Methode (FEM) auf Probleme des Maschinenbaus.
- Fähigkeit zur kritischen Beurteilung von FEM-Analysen.
- Vertrautheit mit den Einsatzmöglichkeiten der FEM in der Bauteilentwicklung.

Verwendbarkeit

B-MB Wahlmodul, anrechenbar für Vertiefungsrichtung Fahrzeugtechnik sowie Konstruktion und Entwicklung, B-FZT

Literatur

Chr. Gebhardt: Praxisbuch FEM mit ANSYS Workbench. Hanser-Verlag.

B. Klein: FEM – Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau. Springer Vieweg.

Grundlagen der Bionik

Leistungspunkte	Leistungsnachweis	Lehrform / SWS		Arbeitsaufwand / h	
5	schPr 90 Min	SU	4	Gesamt	150
Modulverantwortlich	Dozentin / Dozent	Ü	-	Präsenz	60
Prof. Dr. Gaißert	Prof. Dr. Gaißert	Pr	-	Eigenstudiu m	90
Dauer	Häufigkeit d. Angebots	Sprache			
1 Semester	Jedes Semester	Deutsch			

Empfohlene Voraussetzungen

Keine

Inhalt

- Grundlagen der Bionik: Definition, historische Entwicklung
- Strukturiertes bionisches Vorgehen
- Leichtbau: Prinzipien und Umsetzung
- Biomechanik und Übertragung in die Robotik
- Bionik in Architektur und Design
- Bionische Oberflächen
- Evolutionstheorie, Ableitungen für Effizienz, Kommunikation
- Bionische Informationsverarbeitung
- Grundlagen der Biologie, Aufbau der Zelle, DNA, Proteine, Stoffwechsel, Modifikation von Zellen, industrielle Nutzung

Qualifikationsziel

- Allgemeines Verständnis der Biologie
- Verknüpfung von Grundlagen der Biologie mit Chemie, Physik, Mechanik und Mathematik um das Verständnis der Zusammenhänge der Naturwissenschaften zu bilden
- Fundierte Kenntnisse der Bionik, Biomechanik und biologisch-inspirierter Materialien
- Fähigkeit zur Übertragung biologischer Prinzipien in die technische Anwendung

Verwendbarkeit

B-MB, B-FZT, B-ERT

Literatur

W. Nachtigall: Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler, Springer Verlag

W. Nachtigall: Bionik als Wissenschaft: Erkennen ☐ Abstrahieren ☐ Umsetzen, Springer Verlag

B.Hill: Bionik Band 1-20, Knabe Verlag Weimar (Schwerpunkt: Band 20 1x1 des Naturorientierten Erfindens, Band 19

Evolution in Natur und Technik, Band 3 Leichtbau, Band 6 Vom Fliegen, Band 16 Verpacken, Band 11 Klimatisierung und

Lüftung, Band 17 Roboter und Prothesen)

H. Schewe: Biomechanik, Thieme Verlag

W. Wawers: Bionik: Bionisches Konstruieren verstehen und anwenden

Technical International Project

Leistungspunkte	Leistungsnachweis	Lehrform / SWS	Arbeitsaufwand / h
5	StA, Präsentation	SU -	Gesamt 150
Modulverantwortlich	Dozentin / Dozent	Ü -	Präsenz 60
Prof. Dr. Biedermann	Prof. Dr. Biedermann & Kollegen	Pr 4	Eigenstudiu 90 m
Dauer	Häufigkeit d. Angebots	Sprache	
1 Semester	Jedes Semester	Englisch, Deutsch	

Empfohlene Voraussetzungen

Ingenieurwissenschaftliche Grundlagen, englische Sprachkenntnisse

Inhalt

- Unilaterale/ bilaterale/ trilaterale Zusammenarbeit eigener Studierender mit Studierenden der Partnerhochschulen MB&VS
- Bearbeitung einer komplexen ingenieurwissenschaftlichen Thematik unter Definition des Problems, der Erarbeitung von Lösungsmethoden, Realisierung von (Teil)Lösungen und Dokumentation/Präsentation der Ergebnisse.
- Anwendung numerischer, analytischer und/ oder experimenteller Methoden
- Interkultureller Austausch vor Ort und/ oder an Partnerhochschulen
- Die Lehrveranstaltung findet im Rahmen der Blended Intensive Programmes (BIP) mit ERASMUS Partnern, im Rahmen des Studierendenaustauschs oder im Rahmen internationaler Lehrforschungsprojekte statt.

Qualifikationsziel

Nach der Teilnahme an der Modulveranstaltung sind die Studierenden in der Lage:

- Ein ingenieurwissenschaftliches Problem zu benennen, zu klassifizieren und anhand spezifischer Charakteristika zu erfassen,
- den Stand der Technik zu skizzieren, technologische Entwicklungen einzuordnen und selbstständig zu
- bewerten,
- anhand gegebener Randbedingungen geeignete methodische Ansätze begründet auszuwählen,
 Chancen und Hemmnisse einzelner Techniken und Methoden gegenüberzustellen und ganzheitlich zu beurteilen,
- ein gemeinsames Projekt zu koordinieren und eine Lösungsstruktur zu konzipieren,
- gewonnene Ergebnisse zu diskutieren, zu reflektieren und zu präsentieren.

Verwendbarkeit

B-MB, B-FZT, B-ERT, B-MEC

- D. G. Charmichael: Problem Solving for Engineers, CRC Press, 2013.
- E. Glaser: The Intercultural Dynamics of Multicultural Working, Multilingual Matters, 2010
- G. Thomas: How to Do Your Research Project, SAGE Publications, 2022

Extended Technical International Project

Laiatumaanumkta	Laiatunganaahuusia	Lehrform / SWS	Arbeitsaufwand / h
Leistungspunkte	Leistungsnachweis	Lenriorm/SWS	Arbeitsaurwand / n
10	StA, Präsentation	SU -	Gesamt 300
Modulverantwortlich	Dozentin / Dozent	Ü -	Präsenz 120
Prof. Dr. Biedermann	Prof. Dr. Biedermann & Kollegen	Pr 8	Eigenstudiu 180 m
Dauer	Häufigkeit d. Angebots	Sprache	
1 Semester	Jedes Semester	Englisch, Deutsch	

Empfohlene Voraussetzungen

Ingenieurwissenschaftliche Grundlagen, englische Sprachkenntnisse

Inhalt

- Unilaterale/ bilaterale/ trilaterale Zusammenarbeit eigener Studierender mit Studierenden der Partnerhochschulen MB&VS
- Bearbeitung einer komplexen ingenieurwissenschaftlichen Thematik unter Definition des Problems, der Erarbeitung von Lösungsmethoden, Realisierung von (Teil)Lösungen und Dokumentation/Präsentation der Ergebnisse.
- Anwendung numerischer, analytischer und/ oder experimenteller Methoden
- Interkultureller Austausch vor Ort und/ oder an Partnerhochschulen
- Die Lehrveranstaltung findet im Rahmen der Blended Intensive Programmes (BIP) mit ERASMUS Partnern, im Rahmen des Studierendenaustauschs oder im Rahmen internationaler Lehrforschungsprojekte statt.

Qualifikationsziel

Nach der Teilnahme an der Modulveranstaltung sind die Studierenden in der Lage:

- Ein ingenieurwissenschaftliches Problem zu benennen, zu klassifizieren und anhand spezifischer Charakteristika zu erfassen,
- den Stand der Technik zu skizzieren, technologische Entwicklungen einzuordnen und selbstständig zu
- bewerten,
- anhand gegebener Randbedingungen geeignete methodische Ansätze begründet auszuwählen,
 Chancen und Hemmnisse einzelner Techniken und Methoden gegenüberzustellen und ganzheitlich zu beurteilen,
- ein gemeinsames Projekt zu koordinieren und eine Lösungsstruktur zu konzipieren,
- gewonnene Ergebnisse zu diskutieren, zu reflektieren und zu präsentieren.

Verwendbarkeit

B-MB, B-FZT, B-ERT, B-MEC

- D. G. Charmichael: Problem Solving for Engineers, CRC Press, 2013.
- E. Glaser: The Intercultural Dynamics of Multicultural Working, Multilingual Matters, 2010
- G. Thomas: How to Do Your Research Project, SAGE Publications, 2022