Modulhandbuch

Bachelor Media Engineering (B-ME)

Ausgabe G gültig ab 01.10.2019
(gemäß Beschluss des Fakultätsrats vom 01.10.2019)
Inhalt

<table>
<thead>
<tr>
<th>Modul</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mathematik I</td>
<td>3</td>
</tr>
<tr>
<td>2 Physical Computing</td>
<td>4</td>
</tr>
<tr>
<td>3 Multimedia</td>
<td>5</td>
</tr>
<tr>
<td>4 Gestaltungs- und Medienlehre I</td>
<td>6</td>
</tr>
<tr>
<td>5 Programmieren I</td>
<td>7</td>
</tr>
<tr>
<td>6 Mathematik II</td>
<td>8</td>
</tr>
<tr>
<td>7 Gestaltungs- und Medienlehre II</td>
<td>9</td>
</tr>
<tr>
<td>8 Fotografie</td>
<td>10</td>
</tr>
<tr>
<td>9 Digitale Medien</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Programmieren II</td>
<td>12</td>
</tr>
<tr>
<td>11 Programmieren III</td>
<td>14</td>
</tr>
<tr>
<td>12 Mathematik III</td>
<td>15</td>
</tr>
<tr>
<td>13 Datenbanken</td>
<td>17</td>
</tr>
<tr>
<td>14 Datennetze</td>
<td>18</td>
</tr>
<tr>
<td>15 Exemplarische Vertiefung I - Fachwissenschaftliche WPM der Gruppe 1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Interdisziplinäres Projekt I</td>
<td>30</td>
</tr>
<tr>
<td>19.1 Projekt I</td>
<td>31</td>
</tr>
<tr>
<td>19.2 Präsentationstechnik und Rhetorik</td>
<td>32</td>
</tr>
<tr>
<td>20 Wissenschaftliches Arbeiten</td>
<td>33</td>
</tr>
<tr>
<td>21 Ergonomie und Usability Engineering</td>
<td>34</td>
</tr>
<tr>
<td>22 Exemplarische Vertiefung II - Fachwissenschaftliche WPF der Gruppe 1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Interdisziplinäres Projekt II</td>
<td>40</td>
</tr>
<tr>
<td>23.1 Projekt II</td>
<td>41</td>
</tr>
<tr>
<td>23.2 Marketing</td>
<td>42</td>
</tr>
<tr>
<td>24 Ergänzende Vertiefung - Fachwissenschaftliche WPF der Gruppe 2</td>
<td>43</td>
</tr>
<tr>
<td>25 Fachübergreifende Qualifikation</td>
<td>44</td>
</tr>
<tr>
<td>25.1 Medienrecht</td>
<td>45</td>
</tr>
<tr>
<td>25.2 Trends in Media Engineering</td>
<td>46</td>
</tr>
<tr>
<td>25.3 Allgemeinwissenschaftliche Wahlpflichtfächer (AWPF)</td>
<td>47</td>
</tr>
<tr>
<td>26 Abschlussarbeit</td>
<td>48</td>
</tr>
<tr>
<td>26.1 Bachelorarbeit</td>
<td>49</td>
</tr>
<tr>
<td>26.2 Bachelorseminar</td>
<td>50</td>
</tr>
<tr>
<td>27 Praxissemester</td>
<td>51</td>
</tr>
<tr>
<td>27.1 Praxisteil</td>
<td>52</td>
</tr>
<tr>
<td>27.2 Praxisseminar</td>
<td>53</td>
</tr>
<tr>
<td>27.3 Lehrveranstaltungen zum Praxisseminar</td>
<td>54</td>
</tr>
<tr>
<td>27.3.1 Software- und Projektmanagement</td>
<td>55</td>
</tr>
<tr>
<td>27.3.2 Technical and Business English</td>
<td>56</td>
</tr>
</tbody>
</table>
1 Mathematik I

Modulverantwortung: Prof. Dr. Arndt

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Vermittlung von Grundlagen der Ingenieursmathematik
- Kenntnis der elementaren Algebra und Wahrscheinlichkeitstheorie
- Kenntnis der elementaren Kombinatorik, Zahlentheorie, Algebra
- Rechnen mit komplexen Zahlen

Inhalte:
- Mengen, Aussagen, Relationen.
- Algebraische Strukturen: Gruppen, Ringe, Körper.
- Komplexe Zahlen, Einheitswurzeln, komplexe Exponentialfunktion.
- Lineare Algebra: Vektorräume, lineare Abbildungen und lineare Gleichungssysteme.
- Grundlagen der Wahrscheinlichkeitstheorie.
- Natürliche Zahlen, Induktion
- Kombinatorik und diskrete Wahrscheinlichkeiten
- Algebraische Strukturen: Gruppen, Ringe, Körper.
- Komplexe Zahlen, kartesische und Polarform, Wurzeln

Literatur:
- M. Brill: Mathematik für Informatiker; Hanser
- K. Denecke: Algebra und diskrete Mathematik für Informatiker; Teubner
- L. Lovasz, J. Pelikan: Diskrete Mathematik; Springer
- K. U. Witt: Algebraische Grundlagen der Informatik, Vieweg

Workload
- 68 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 82 Std. Vor- und Nachbereitung des Lehrstoffes
- 30 Std. Prüfungsvorbereitung

 = 180 Stunden / 6 Leistungspunkte

Umfang:
- 6 SWS

Lehrveranstaltungen:
- 4 SWS Seminaristischer Unterricht + 2 SWS Übung

Sprache
- ☒ Deutsch
- ☐ Englisch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Schriftliche Prüfung 90 Min.
2 Physical Computing

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Überblick über physikalische Grundlagen der Informationstechnik und ihre Anwendung in der Computertechnik
- Basiswissen in elektrotechnischer Schaltungstechnik, Mikroelektronik und Informatik

Inhalte:
- Physikalisch-technische Grundlagen
- Grundelemente elektronischer Schaltungstechnik
- Digitale Schaltungen
- Mikroelektronische Grundlagen
- Binäres Zahlensystem, Dualarithmetik und Binärcodes
- Komponenten einer digitalen Rechenanlage und deren Zusammenspiel
- Machinennahe Programmiersprachen

Literatur:
- Popp-Nowak, F.: Skript zu Grundlagen der Digitaltechnik

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 105 Std. Vor- und Nachbereitung des Lehrstoffes, Übungsaufgaben, Prüfungsvorbereitung
- = 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht + 2 SWS Übung

Sprache:
- ☒ Englisch ☐ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Klausur 90 Minuten oder Befragung 20 Minuten
3 Multimedia

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Kenntnis der wichtigsten Technologien, Verfahren und Vorgehensweisen bei der Erzeugung und Bearbeitung multimedialer Anwendungen

Inhalte:
- Mediale Komponenten und deren Standards, Datenformate und Datenkompression
- Grundlagen der Audio-, Foto- und Videotechnik
- Farbe und Farbsysteme
- Erstellung und Bearbeitung von medialen Komponenten und Multimedia-Anwendungen
- Web-Grundlagen und Auszeichnungssprachen (XML, HTML, ...)
- Gerätechnik
- Interaktion
- Virtuelle Realität
- Beispiele multimediaer Produktionen

Literatur:
- Zöller-Greer, Peter, Multi Media Systeme: Grundlagen und Anwendungen, composia, 2010
- Holzinger A., Basiswissen Multimedia (Band 1-3), Vogel Verlag, 2002

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 105 Std. Vor- und Nachbereitung des Lehrstoffes, Übungsaufgaben, Prüfungsvorbereitung
 = 150 Stunden / 5 Leistungspunkte

Umfang: 4 SWS

Lehrveranstaltungen: 3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
- Englisch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung: Schriftliche Prüfung 90 Min.
4 Gestaltungs- und Medienlehre I

Modulverantwortung:
Prof. Dr. Lano, Prof. Albert

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Kenntnisse über Grundlagen visueller Gestaltung
- Künstlerische, kreative und handwerkliche Kenntnisse zur universellen Anwendung der Gestaltungsabelemente Form, Raum und Farbe
- Kenntnisse von Gestaltungsprozessen sowie in wahrnehmungsbezogenen, ästhetischen und kommunikativen Wirkungsweisen von Gestaltung

Inhalte:
- Begrifflichkeiten und konkrete Problemstellungen Form, Raum und Farbe
- Bildgestaltung, Proportions- und Kompositionslehre
- Skizzieren und Ideen festhalten
- Farbgesetze und Farbsysteme

Literatur:
- Pina Lewadowsky, Francis Zeischegg: Visuelles Gestalten mit dem Computer. Rowohlt
- Damien Gautier, Gestaltung, Typografie etc: Ein Handbuch, Niggli Verlag; 2010

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 15 Std. Literaturstudium und freies Arbeiten
- 90 Std. Vor- und Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
- = 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
- ☑ Englisch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Prüfungsstudienarbeit
5 Programmieren I

Modulverantwortung: Prof. Dr. Lano

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse und Fähigkeiten auf Fachoberschulniveau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse der Grundbegriffe der Informatik und der Programmierung</td>
</tr>
<tr>
<td>Kenntnisse grundlegender Algorithmen und primitiver Datenstrukturen sowie der Kontrollstrukturen und Fähigkeit diese problemübergreifend zu erkennen</td>
</tr>
<tr>
<td>Fähigkeit, ein syntaktisch einwandfreies Programm in einer objektorientierten Programmiersprache zu erstellen</td>
</tr>
<tr>
<td>Fähigkeit, mit Hilfe eines Debuggers Programmfehler aufzuspüren und zu beheben</td>
</tr>
<tr>
<td>Erfahrung der Programmentwicklung durch praktische Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In einer Programmiersprache, werden folgende Themen behandelt:</td>
</tr>
<tr>
<td>Primitive Datenstrukturen: int, char, boolean, double</td>
</tr>
<tr>
<td>Höhere Datenstrukturen: String, Arrays, Collections</td>
</tr>
<tr>
<td>Kontrollstrukturen: Sequenz, Fallunterscheidung, Schleifenarten, Iteratoren</td>
</tr>
<tr>
<td>Klassenbegriff, Unterscheidung Klasse und Objekt</td>
</tr>
<tr>
<td>Methoden und Parameter</td>
</tr>
<tr>
<td>Objektzustand</td>
</tr>
<tr>
<td>Klassenvariablen</td>
</tr>
<tr>
<td>Vererbung und Polymorphie</td>
</tr>
<tr>
<td>Ausnahmen</td>
</tr>
<tr>
<td>Modultechnik</td>
</tr>
<tr>
<td>Einfache GUI-Programmierung</td>
</tr>
<tr>
<td>Weitere Themen: Geschichte der Informatik, Strukturierter Entwurf, Entwicklungsumgebung, Dokumentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lano, R.P.: Variationen zum Thema: Java</td>
</tr>
<tr>
<td>Roberts, E.: Karel the Robot Learns Java</td>
</tr>
<tr>
<td>Roberts, E.: The Art and Science of Java</td>
</tr>
<tr>
<td>Sedgewick, R. and Wayne, K.: Introduction to Programming in Java</td>
</tr>
<tr>
<td>Eck, D.J.: Introduction to Programming Using Java, Sixth Edition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen</td>
</tr>
<tr>
<td>140 Std. Vor- und Nachbereitung des Lehrstoffes,</td>
</tr>
<tr>
<td>40 Std. Prüfungsvorbereitung</td>
</tr>
<tr>
<td>= 270 Stunden / 9 Leistungspunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umfang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS Seminaristischer Unterricht + 4 SWS Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulfrequenz:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 90 Min.</td>
</tr>
</tbody>
</table>
6 Mathematik II

Modulverantwortung: Prof. Dr. Arndt

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 1 Mathematik I

Lernziele:
- Vermittlung von methodischem Wissen in linearer Algebra und Analysis
- Kenntnis der elementaren Funktionen und Grundlagen der Analysis
- Einblick in fachbezogene Anwendungen

Inhalte:
- Elementare Funktionen im reellen und komplexen.
- Differential- und Integralrechnung mit einer und mehreren Variablen.
- Differentialgleichungen.
- Parametrische Kurven und Interpolation, Splines und Bezierkurven.
- Vektorräume, Matrizenrechnung, lineare Gleichungssysteme und Determinanten
- Folgen und Reihen, elementare Funktionen, komplexe Exponentialfunktion
- Differenzial- und Integralrechnung einer und mehrerer Variablen
- Einfache Differenziell- und Differenzengleichungen
- Interpolations- und Bernstein-Polynome, kubische Splines und Bezierkurven

Literatur:
- Salas, Hille: Calculus, Spektrum Verlag
- M. Brill: Mathematik für Informatiker; Hanser
- G. Strang: Linear Algebra; Springer

Workload
- 68 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 82 Std. Vor- und Nachbereitung des Lehrstoffes
- 30 Std. Prüfungsvorbereitung
- = 180 Stunden / 6 Leistungspunkte

Umfang:
- 6 SWS

Lehrveranstaltungen:
- 4 SWS Seminaristischer Unterricht + 2 SWS Übung

Sprache
- Englisch ☒ Deutsch

Modulfrequenz:
- ☐ Wintersemester ☒ Sommersemester

Prüfung:
- Schriftliche Prüfung 90 Min.
7 Gestaltungs- und Medienlehre II

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 4 Gestaltung- und Medienlehre I

Lernziele:
- Fähigkeit zur anwendungsbezogenen Ausarbeitung von Visualisierungen
- Gestalterische Umsetzungskompetenz in den Bereichen Bild, Text und Ton
- Grundkenntnisse in der Entwicklung einheitlicher Bildsprache

Inhalte:
- Kreativtechniken zur Ermittlung möglicher Lösungsansätze für Visualisierungen
- Grundlagen der freien Zeichnung und Illustration
- Grundlagen ablaufbezogener Gestaltungstechniken (Storyboard, Scribbled Scenarios)
- Icon-Entwicklung, Logogramme und Signets
- Layouttechnik und Typografie

Literatur:
- Pina Lewandowsky, Francis Zeischegg: Visuelles Gestalten mit dem Computer. Rowohlt
- Informationen verbreiten: Medien gestalten und herstellen von Ulrich Paasch, Jochem Ottersbach, Klemens Kieslinger und Annette Mörsberger von Beruf + Schule Belz Kg, 2010
- Gavin Ambrose, Layout Basics - Raster, Verlag: Stiebner; 2009

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 15 Std. Literaturstudium und freies Arbeiten
- 90 Std. Vor- und Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
= 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
- Englisch ☑ Deutsch

Modulfrequenz:
- Wintersemester ☑ Sommersemester

Prüfung:
- Prüfungsstudienarbeit
8 Fotografie

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Kenntnis von Grundprinzipien der Bildgestaltung.
- Kenntnis von geschichtlichen Aspekten der Bildwertung.
- Fähigkeit Kriterien zur Bildbewertung anzuwenden.
- Einblicke in zeitgenössische Darstellungsformen.
- Entwicklung und Realisierung eines eigenständigen Bildkonzepts

Inhalte:
- Vergleichende Analyse von Bildelementen.
 - Fotografisches Sehen
 - Analyse und Diskussion von Kriterien zur Bildwahrnehmung und Bildwertung
 - Analyse der medialen Wirkung von Bildlichkeiten
 - Vermittlung bildsprachlicher Grundkenntnisse.
 - Gestalterische Grundlagen und Bildkomposition
 - Kreativtechniken und Konzeptentwicklung
 - Erarbeitung einer eigenen Bildsprache anhand eines vorgegebenen Themas
 - Entwicklung einer Bildidee mit Konzept, eigenständige fotografische Umsetzung, Präsentation und Ausstellung
 - Arbeiten im Fotostudio
 - Beleuchten: Einsatz von Studiolicht und Verwendung von natürlichem Licht

Literatur:
- Harald Mante: Das Foto - Bildaufbau und Farbdesign. Verlag Photographie, 4. Auflage, 2018
- Bruce Barnbaum: Die Kunst der Fotografie: Der Weg zum eigenen fotografischen Ausdruck, dpunkt.verlag, 2017
- Robert Mertens: Der kreative Fotograf: Neue Impulse für außergewöhnliche Bilder, Rheinwerk Verlag, 2017
- Manfred Kriegelstein: Die Kunst des Sehens: Fotografie - Verborgenes sichtbar machen, dpunkt.verlag, 2017
- Andreas Feininger: Große Fotolehre. Heyne-Verlag

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 15 Std. Literaturstudium und freies Arbeiten
- 90 Std. Vor- und Nachbereitung des Lehrstoffes, Prüfungsvorbereitung

= 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht + 2 SWS Praktikum

Sprache:
- ☐ Englisch
- ☒ Deutsch

Modulfrequenz:
- ☐ Wintersemester
- ☒ Sommersemester

Prüfung:
- Prüfungsstudienarbeit
9 Digitale Medien

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Details zu den Teilmodulen sind nachfolgend aufgeführt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>150 Stunden / 5 Leistungspunkte</td>
</tr>
<tr>
<td>Umfang:</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>3 SWS Seminaristischer Unterricht + 1 SWS Praktikum</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
</tbody>
</table>
9.1 Medienkonzeptionen

Modulverantwortung:
Prof. Dr. Lano, Prof. Dr. Schaden

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Kenntnisse und Fähigkeiten aus folgenden Modulen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Nr. 4 Gestaltung- und Medienlehre I</td>
</tr>
</tbody>
</table>

Lernziele:	Fähigkeit zur Planung und Konzeption medialer Produktionen
	Fähigkeit zur anwendungsbezogenen Ausarbeitung gestalterischer Konzepte
	Entwicklung von Designstrategien zur Visualisierung von Information

Inhalte:	Darstellung von Design-Konzepten für interaktive Bildmedien, für Video-Produktionen, für Computer-Animationen, für Fernsehsendungen im werblichen, wissenschaftlichen und kulturellen Bereich
	Darstellung von Drehbüchern und Storyboards, Storytelling
	Anwenden verschiedener gestalterischer Techniken zur Visualisierung von Information
	Entwurf und Konzeption, Planung, Medienauswahl und Ausführung

Literatur:	Robert Klanten (Editor), Data Flow Vizualizing Information in Graphic Design, Gestalten Berlin 2008
	Ginsburg, A User-Centered Approach to Sketching and Prototyping iPhone Apps, Addison-Wesley
	Bernad Batinic, Markus Appel (Hrsg.): Medienpsychologie. 2008, Heidelberg: Springer.
	Axel Gräfenhain: Schriften in der Medienkonzeption. 2007
	Katarina Henkel (Hrg.), Zwischen Film und Kunst, Storyboards von Hitchcock bis Spielberg, Deutsche Kinemathek, Museum für Film und Fernsehen, 2011
	Cyrus Dominik Khazaeli, Systemisches Design, 2005, Rowohlt Verlag

Workload	22,5 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
	22,5 Std. Vor- und Nachbereitung des Lehrstoffes
	15 Std. Prüfungsvorbereitung
	= 60 Stunden / 2 Leistungspunkte

| Umfang: | 2 SWS |

| Lehrveranstaltungen: | 2 SWS Seminaristischer Unterricht |

| Sprache | ☒ Englisch ☑ Deutsch |

| Prüfung: | Klausur 90 Minuten oder Befragung 20 Minuten |
9.2 Web Grundlagen

Modulverantwortung: Prof. Dr. Hopf

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 3 Multimedia

Lernziele:
- Verständnis von Seitenbeschreibungssprachen
- Verständnis des Rendering-Workflows in Browsern
- Prinzipielles Verständnis des Aufbaus von Webservern und Webspaces
- Verständnis von serverseitigen Technologien zur Gestaltung von interaktiven Webseiten

Inhalte:
- HTML5
- CSS
- Bildformate und Anwendungsscenarios
- URLs, Pfade, Mime Types
- Sicherheitsaspekte
- CGI und verwandte Scripttechnologien
- Template-Engines und Content Management Systeme

Literatur:
- W. Peter M. Müller: Das große Little Boxes-Buch, Markt+Technik Verlag, 2011
- Jason Beaird: Gelungenes Webdesign: Die Prinzipien der Webseitengestaltung, Dpunkt Verlag, 2011

Workload:
- 22,5 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 20 Std. regelmäßige Nachbereitung des Lehrstoffes
- 20 Std. Literaturstudium und freies Arbeiten
- 27,5 Std. Prüfungsvorbereitung
 - = 90 Stunden / 3 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- 1 SWS Seminaristischer Unterricht + 1 SWS Praktikum

Sprache:
- ☑ Deutsch

Prüfung:
- Klausur 90 Minuten oder Befragung 20 Minuten
10 Programmieren II

Modulverantwortung:
Prof. Dr. Lano, Prof. Dr. Röttger

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 5 Programmieren I

Lernziele:
- Kenntnisse einfacher Algorithmen und Fähigkeit deren Komplexität abzuschätzen
- Das Wesen von Rekursion verstehen und Fähigkeit eigene rekursive Lösungen zu entwerfen
- Sicherheit im Umgang mit Standard-Datenstrukturen und Fähigkeit die richtige für eine gegebene Aufgabe auszuwählen
- Fähigkeit mit Dateien zu arbeiten
- Die Studierenden sollen auch Kenntnisse einer Systemprogrammiersprache erwerben und die Gemeinsamkeiten und Differenzen verstehen

Inhalte:
- Fortsetzung der Lehrinhalte von Programmieren I, u.a.:
 - Komplexität und Berechenbarkeit in Algorithmen
 - Verkettungsstrukturen (einfach, mehrfach, gerichtet), insbesondere Listen, Bäume und Graphen
 - Rekursion
 - Sortier- und Suchalgorithmen
 - Nutzung von Operatoren
 - Klassenbibliotheken
 - Vertiefung von Ausnahmen und ihre Behandlung

Literatur:
- Kernighan, B.W. and Ritchie, D.: The C Programming Language
- Stroustrup, B., Die C++-Programmiersprache
- Lano, R.P.: Variationen zum Thema: Algorithmen
- Goodrich, M.T. and Tamassia, R.: Data Structures and Algorithms in Java
- Introduction to Programming in Java, Robert Sedgewick and Kevin Wayne

Workload
- 90 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 110 Std. Vor- und Nachbereitung des Lehrstoffes,
- 30 Std. Literaturstudium und freies Arbeiten
- 40 Std. Prüfungsvorbereitung

= 270 Stunden / 9 Leistungspunkte

Umfang:
8 SWS

Lehrveranstaltungen:
4 SWS Seminaristischer Unterricht + 4 SWS Praktikum

Sprache
- ☐ Englisch ☒ Deutsch

Modulfrequenz:
- ☐ Wintersemester ☒ Sommersemester

Prüfung:
Schriftliche Prüfung 90 Min.
11 Programmieren III

Modulverantwortung: Prof. Dr. Hofmann, Prof. Dr. Röttger

Voraussetzungen: Kenntnisse und Fähigkeiten aus folgenden Modulen:
- Nr. 6 Mathematik II
- Nr. 10 Programmieren II

Lernziele:
- Kenntnis wichtigster aktueller Vorgehensmodelle der (Software-) Systementwicklung
- Fähigkeit zur Beurteilung und Anwendung von Prozessmodellen
- Fähigkeit zur Ermittlung und Spezifikation von Anforderungen und Use Cases
- Kenntnis der aktuellen Methoden und Notationen für objektorientierte Modellierung
- Fähigkeit, ein (insbesondere technisches) System durchgängig objektorientiert zu modellieren und hinsichtlich Wartbarkeit und Erweiterbarkeit zu verbessern
- Kenntnis aktueller Architekturen; verteilte Systeme
- Fähigkeit der Anwendung von wichtigen Entwurfsmustern
- Fähigkeit objektorientiertes Programmiern mit einer Systemsprache
- Praxisorientierter Einsatz von OO-Techniken
- Kenntnis von praxisrelevanten OO-Bibliotheken
- Fähigkeit zur Analyse von größeren OO-Anwendungen

Inhalte:
- Entwicklungsprozesse und Prozessmodelle: V-Modell; inkrementelle und iterative Vorgehensmodelle; schwer- und leichtgewichtige Prozesse
- Anforderungsanalyse, Use Cases und Use Case Diagramme
- Objektorientiertes Denken, objektorientierte Analyse und objektorientiertes Design
- Statische und dynamische Modellierung mit Unified Modeling Language (UML)
- Architekturkonzepte, Entwurfsmuster
- Refactoring
- Grundlegende OO-Programmiertechniken bei Systemsprachen
- Anwendung von ausgewählten OO-Bibliotheken mit einer Systemsprache
- Versionskontrolle

Literatur:
- Larman: UML 2 und Patterns angewendet; mitp
- Herold, Klar: C++, UML und Design Patterns, Addison-Wesley
- Freeman, Freeman: Entwurfsmuster von Kopf bis Fuß, O'Reilly
- Rupp, Queins: UML 2 glasklar: Praxisswisen für die UML-Modellierung, Hanser Verlag
- Gamma, Erich; et.al: "'Design Patterns - Elements of Reusable Object-Oriented Software'", Addison-Wesley, 1995.

Workload
- 67,5 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 35 Std. Literaturstudium und freies Arbeiten
- 45 Std. Vor- und Nachbereitung des Lehrstoffes
- 32,5 Std. Prüfungsvorbereitung
- = 180 Stunden / 6 Leistungspunkte

Umfang: 6 SWS

Lehrveranstaltungen: 3 SWS Seminaristischer Unterricht + 1 SWS Übung + 2 SWS Praktikum
<table>
<thead>
<tr>
<th>Sprache</th>
<th>☐ Englisch</th>
<th>☒ Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester</td>
<td>☐ Sommersemester</td>
</tr>
<tr>
<td>Prüfung:</td>
<td>Schriftliche Prüfung 90 Min.</td>
<td></td>
</tr>
</tbody>
</table>
12 Mathematik III

Modulverantwortung: Prof. Dr. Arndt

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 1 Mathematik I
 - Nr. 6 Mathematik II

Lernziele:
- Kenntnis der wesentlichen mathematischen Grundlagen der Computergraphik und der Bildverarbeitung
- Vertiefte Kenntnis der linearen Algebra für Computergraphik
- Verständnis der Fourier Transformation und ihrer Anwendungen.

Inhalte:
- Lineare Abbildungen in Vektorräumen und ihre Darstellung mit Matrizen
- Analytische Geometrie: Affiner Raum und affine Transformationen, Koordinatensysteme und Basiswechsel, homogene Koordinaten, Drehungen und perspektivische Projektion
- Eigenwerte, Eigenvektoren und Diagonalisierbarkeit.
- Charakteristisches Polynom einer Matrix und Äquivalenzrelation
- Orthogonaltransformationen: Fourier-Transformation, Faltung und Korrelation
- Basisfunktionen, Multiskalenrepräsentation

Literatur:

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 15 Std. Literaturstudium und freies Arbeiten
- 90 Std. Vor- und Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
 = 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
- ☐ Englisch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Schriftliche Prüfung 90 Min.
13 Datenbanken

Modulverantwortung: Prof. Dr. Schedel

Voraussetzungen: Kenntnisse und Fähigkeiten aus folgenden Modulen:
- Nr. 5 Programmieren I
- Nr. 10 Programmieren II

Lernziele:
- Überblick über Architektur, Funktionsweise und Einsatz von Datenbanksystemen
- Fähigkeit zum Umgang mit Datenbanksystemen und zur sicheren Nutzung einer Datenbankabfragesprache
- Kenntnis von Datenmodellierungsmethoden und Fähigkeit zur Erstellung von Datenmodellen

Inhalte:
- Aufbau und Funktionsweise eines Datenbanksystems
- Datenbankkonzepte
- Objektrelationale Datenbanksysteme
- Einführung in SQL: Datendefinitionssprache, Datenmanipulationssprache, Datenabfragesprache, Datenkontrollsprache
- Effizienter Einsatz von SQL zur Problemlösung
- Normalformen und Normalisierung

Literatur (Auszug):
- C. J. Date, An Introduction to Database Systems. Addison Wesley Longman, 2000
- Alan Beaulieu, Dorothea Heymann-Reeder, Lars Schulten: Einführung in SQL, O'Reilly, 2009
- Lynn Beighley und Lars Schulten: SQL von Kopf bis Fuß, O'Reilly, 2008
- C. J. Date: SQL and Relational Theory: How to Write Accurate SQL Code, O'Reilly Media 2012

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 20 Std. regelmäßige Nachbereitung des Lehrstoffes,
- 45 Std. Erstellung von Lösungen, Ausarbeitungen und Präsentationen
- 20 Std. Literaturstudium und freies Arbeiten
- 15 Std. Prüfungsvorbereitung
= 150 Stunden / 5 Leistungspunkte

Umfang: 4 SWS

Lehrveranstaltungen: 2 SWS Seminaristischer Unterricht + 2 SWS Praktikum

Sprache ☐ Englisch ☒ Deutsch

Modulfrequenz: ☒ Wintersemester ☐ Sommersemester

Prüfung: Schriftliche Prüfung 90 Min.
14 Datennetze

Modulverantwortung: Prof. Dr. Lehner

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 2 Physical Computing

Lernziele:
- Die Architektur von Protokollen zur Datenübertragung zu kennen
- Die Prinzipien der Datenübertragung auf Bussen und in Lokalen Netzen zu verstehen
- Die Funktionsweise und die Leistungsfähigkeit von Schnittstellen zu kennen
- Lokale Netze planen und aufbauen zu können
- Schnittstellen und Netze für Anwendungen richtig einsetzen zu können

Inhalte:
- Architektur und Anwendung des ISO/OSI-Referenzmodells
- Medien für die Datenübertragung: Glasfaser, Kupfer
- Physikalische Schicht: Modemtechnologie und Leitungskodierung
- Standard-Datenübertragungs-Schnittstellen
- MAC-Layer: Vielfachzugriffsprotokolle und Bussysteme
- Protokolle: TCP, IP, http
- Anwendungen
- Netzwerksicherheit

Literatur:
- Werner Martin; Netze Protokolle, Schnittstellen und Nachrichtenverkehr
- Welzel Peter; Datenübertragung
- Tanenbaum, A.S.: Computernetzwerke
- Kurose Fames, Ross Keith; Computernetze

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 15 St. Literaturstudium und freies Arbeiten
- 70 Std. Vor- und Nachbereitung des Lehrstoffes
- 20 Std. Prüfungsvorbereitung
 \[= 150 \text{ Stunden} / 5 \text{ Leistungspunkte}\]

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht + 2 SWS Praktikum

Sprache
- ☒ Englisch ☐ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Schriftliche Prüfung 90 Min.
15 Exemplarische Vertiefung I - Fachwissenschaftliche WPM der Gruppe 1

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Kenntnisse und Fähigkeiten nach Modulbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele:</td>
<td>Die fachwissenschaftlichen Wahlpflichtmodule der Gruppe 1 dienen der fachlichen Vertiefung in einem aktuellen Arbeitsgebiet. Da insgesamt (in den Modulen 15 und 18 „Exemplarische Vertiefung“ Teil 1 + 2) 24 SWS zur Verfügung stehen, sind drei Module zu wählen.</td>
</tr>
</tbody>
</table>

 - Beispiele für Vertiefungsmodule:
 - MTE1 Interaktion oder MPO1 Computergraphik

| Workload |
|----------|--|
| | Präsenz in Lehrveranstaltungen und Leistungsnachweisen |
| | Regelmäßige Nachbereitung des Lehrstoffes |
| | Vorbereitung von Versuchen und Präsentationen |
| | Erstellung von Lösungen und Ausarbeitungen |
| | Literaturstudium und freies Arbeiten |
| | Prüfungsvorbereitung |
| | = 270 Stunden / 9 Leistungspunkte |

<table>
<thead>
<tr>
<th>Umfang:</th>
<th>8 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Je nach Modul: Seminaristischer Unterricht, Praktikum, Übung oder Seminar</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
<tr>
<td>Prüfung:</td>
<td>Schriftliche Prüfung 120 Min.</td>
</tr>
</tbody>
</table>
MTE1 Interaktion

Modulverantwortung: Prof. Dr. Brünig

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 3 Multimedia
 - Nr. 10 Programmieren II

Lernziele:
- Kenntnis der wichtigsten Technologien, Verfahren und Vorgehensweisen im Bereich Interaktion und Mensch-Maschine-Kommunikation basierend auf der Analyse von Bilddaten, Audio- und Sprachdaten sowie weiteren Sensorsignalen
- Fähigkeit die Einsatzmöglichkeiten interaktiver Systeme insbesondere in Multimedia-Projekten in verschiedenen Anwendungsfeldern zu beurteilen
- Fähigkeit zur Realisierung einfacher interaktiver multimediator Systeme

Inhalte:
- Sensortechnologien (visuell, auditiv, physikalisch, physiologisch etc.), 3D-Kameras, Multitouch
- Verfahren zur Bearbeitung, Verarbeitung, Segmentierung und Analyse von Bild-/Videodaten sowie Audio-/Sprachdaten
- Mapping von Sensordaten
- Werkzeuge, Programmier- und Ablaufumgebungen zur Realisierung interaktiver Systeme
- Standardisierte und applikationsspezifische Schnittstellentechnologien (MIDI, OSC, TUIO, etc.) und deren Anwendung
- Mediensteuerung (Aktuatoren, Mediengeräte, Anwendungsprogramme, 3D-Engines etc.)
- Implementierung einfacher interaktiver multimediator Systeme

Literatur:

Workload
- 90 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 85 Std. freies Arbeiten im Labor und Literaturstudium
- 50 Std. regelmäßige Nachbereitung des Lehrstoffes
- 45 Std. Prüfungsvorbereitung
= 270 Stunden / 9 Leistungspunkte

Umfang:
- 8 SWS

Lehrveranstaltungen:
- 4 SWS Seminaristischer Unterricht + 4 SWS Praktikum

Sprache
- ☐ Englisch ☒ Deutsch

Prüfung:
- Schriftliche Prüfung 120 Min.
MPO1 Computergraphik

Modulverantwortung: Prof. Dr. Röttger

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 6 Mathematik II
 - Nr. 10 Programmieren II

Lernziele:
- Kenntnis der interaktiven 3D Computergrafik
- Kenntnis von globalen und lokalen Beleuchtungsmodellen und graphischen Effekten
- Hardware-unterstütztes Rendering mit lokalen Beleuchtungsmodellen
- Kenntnis der Computergrafik Pipeline, Transformationen und homogenen Koordinaten
- Fähigkeit, graphische Anwendungen zu programmieren
- Fähigkeit, 3D Objekte zu modellieren
- Fähigkeit, 3D Objekte zu beleuchten und interaktiv zu visualisieren
- Fähigkeit der Shader-Programmierung
- Fähigkeit, 3D Objekte realistisch darzustellen und zu animieren

Inhalte:

Teil 1: Computergrafik-Grundlagen
- Funktion der Grafikhardware
- Grundprinzip graphischer Anwendungen
- Rasterdarstellung und Farbräume
- Prinzip der hardwareunterstützten Graphik-Pipeline
- Darstellung geometrischer Objekte mit Primitiven
- Perspektivische und orthographische Projektion
- 3-dimensional Modell-Transformation, View-Transformation
- Lokale Beleuchtung
- Bildformate, Texturen und Texturkoordinaten
- Vertex- und Fragment-Shader
- Grafische Standardeffekte
- Hierarchische 3D Modellierung
- Animation geometrischer 3D Modelle
- Szenengraphkonzepte und Anwendungen

Teil 2: Grafische Verfahren und Algorithmen
- Blinn-Phong Beleuchtungsmodell
- physikalisch motivierte lokale Reflexionsmodelle
- Photorealismus und globale Beleuchtungsverfahren wie Ray-Tracing, Radiosity, Photon-Tracing
- Fortgeschrittene Effekte mit Shadern, z.B. HDR, Tone-Shading
- Multi-Pass Verfahren und Postprocessing
- Interaktive Schattenberechnung
- Oberflächenmodellierung (Bezier-Patches, Subdivision-Surfaces)

Literatur:

Workload
- 90 Std. Präsenz in Lehrveranstaltungen und Übungen
- 180 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung, freies Arbeiten im Labor und Literaturstudium, Vorbereitung von Ausarbeitung
 \[= 270 \text{ Stunden} / 9 \text{ Leistungspunkte}\]
<table>
<thead>
<tr>
<th>Umfang:</th>
<th>8 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen:</td>
<td>4 SWS Seminaristischer Unterricht + 4 SWS Praktikum</td>
</tr>
<tr>
<td>Sprache</td>
<td>☒ Englisch ☒ Deutsch</td>
</tr>
<tr>
<td>Prüfung:</td>
<td>Schriftliche Prüfung 120 Min.</td>
</tr>
</tbody>
</table>
16 Informations- und Systemtheorie

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 12 Mathematik III

Lernziele:
- Kenntnis der informationstheoretischen Grundlagen
- Kenntnis der wichtigsten Quellen- und Kanalcodierverfahren
- Fähigkeit zur Auswahl dem Einsatzzweck angemessener Verfahren
- Kenntnis der wichtigsten signal- und systemtheoretischen Grundbegriffe

Inhalte:
- Informationstheorie: Entropie, (Markov-)Quellen, Kanäle
- Quellencodierung: Lauflängen-, Huffman-, arithmetische und LZW-Codierung,
 Bild- und Audio-Kompression
- Kanalcodierung: ARQ-/FEC-Verfahren, Fehlererkennbarkeit und
 -korrigierbarkeit, lineare Blockcodes,
- Faltungscode, Viterbi-Decodierer.
- Systemtheorie: Signal-Klassifikation, Fourier-Transformation,
 Systemeigenschaften, LTI-Systeme, Audiosignalverarbeitung

Literatur:
- Carl, H.: Informations- und Systemtheorie, Skriptum Georg-Simon-Ohm-
 Hochschule Nürnberg
- Werner, M.: Signale und Systeme, Springer Vieweg, Braunschweig
- Werner, M.: Information und Codierung, Springer Vieweg, Braunschweig

Workload
- 60 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 90 Std. regelmäßige Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
= 150 Stunden / 5 Leistungspunkte

Umfang:
4 SWS

Lehrveranstaltungen:
3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
☐ Englisch ☒ Deutsch

Modulfrequenz:
☒ Wintersemester ☐ Sommersemester

Prüfung:
Schriftliche Prüfung 90 Min.
17 Design Integration

Modulverantwortung: Prof. Mehl

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 7 Gestaltung- und Medienlehre II
 - Nr. 8 Fotografie
 - Nr. 9 Digitale Medien

Lernziele:
- Fähigkeit zur Planung und Konzeption medialer Produktionen
- Design Integration besteht dabei aus einem Pflichtteil mit max. 4 Vorlesungen (seminaristischem Unterricht - Anwesenheit!) und mindestens zwei Pflicht-Sprechstunden mit den Design-Lehrenden pro Semester.

Inhalte:
- Im Pflichtteil werden wir in Design Integration I die Grundlagen der Integration von Design in ein interdisziplinäres Projekt definieren
- (zum Beispiel Design als Prozess mit mehreren Lösungsansätzen für Usability-Design, für Typografie, Layout, Fotografie und Screen-Design im Projekt, Auswirkung der Design-Entscheidung auf die Soft- und Hardware im Projekt, Erläuterung des Gestaltungsrasters etc.)
- Bei den Pflichtveranstaltungen klären wir außerdem die Bewertungskriterien für die Design Integration: Ausgangspunkt/vergleichende Analyse für das Design im Interdisziplinären Projekt / Originalität der Eigen- oder Weiterentwicklung / Qualität der Design-Lösung von Flyer, Plakat, Presse-Foto und Trailer-Video / Aktualität und Funktionalität der Design-Lösung mit Blick auf Use Cases, soziales Umfeld und Zeitgeist

Literatur:
- Eine detaillierte Liste wird den Studierenden zu Beginn der Vorlesungszeit bekannt gemacht werden.

Workload
- 60 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 90 Std. regelmäßige Nachbereitung des Lehrstoffes, Prüfungsvorbereitung = 150 Stunden / 5 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 3 SWS Seminaristischer Unterricht + 1 SWS Übung

Sprache
- ☑ Englisnch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Ausarbeitungen, Abschlusspräsentation von 15-30 Min. Dauer zzgl. Diskussion
18 Exemplarische Vertiefung II - Fachwissenschaftliche WPF der Gruppe 1

Voraussetzungen: ➡ Kenntnisse und Fähigkeiten nach Modulbeschreibung

Beispiele für Vertiefungsmodule:
➡ MTE2 Internetprogrammierung oder MPO2 Audio- und Videotechnik

Workload ➡ Präsenz in Lehrveranstaltungen und Leistungsnachweisen
➡ Regelmäßige Nachbereitung des Lehrstoffes
➡ Vorbereitung von Versuchen und Präsentationen
➡ Erstellung von Lösungen und Ausarbeitungen
➡ Literaturstudium und freies Arbeiten
➡ Prüfungsvorbereitung
= 270 Stunden / 9 Leistungspunkte

Umfang: 8 SWS

Lehrveranstaltungen: Je nach Modul: Seminaristischer Unterricht, Praktikum, Übung oder Seminar

Modulfrequenz: ☒ Wintersemester ☐ Sommersemester

Prüfung: Schriftliche Prüfung 120
MTE2 Internetprogrammierung

Modulverantwortung: Prof. Dr. Lano, Prof. Dr. Schedel

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 9 Digitale Medien
 - Nr. 11 Programmieren III
 - Nr. 13 Datenbanken
 - Nr. 14 Datennetze

Lernziele:
- Kenntnis über Softwareengineeringtechniken zur Entwicklung von
datenbankgestützten Web-Applikationen
- Fortgeschrittene Methoden zur Softwareentwicklung kennen und erproben
- Fähigkeit zur Programmierung von Datenbanken mit (prozeduralen)Erweiterungen der SQL-Abfragensprache
- Fähigkeit serverseitige Webapplikations zu entwickeln
- Kenntnis mindestens einer moderne Entwicklungsumgebung
- Verständnis des Object Relation Mapping
- Fähigkeit Webservices umsetzen und verwenden zu können
- Verständnis für die Probleme der Skalierbarkeit
- Fähigkeit Enterprise Applikationen zu verstehen

Inhalte:
An konkreten Projekten, sollen die Studierenden den Umgang mit folgenden Techniken erlernen:
- Umgang mit einer modernen Entwicklungsumgebung (z.B. Eclipse, Netbeans oder Visual Studio)
- Serverseitige Scriptsprachen (z.B. JSP, Ruby oder ASP)
- Model-View-Controller (z.B. Jakarta Struts, Ruby on Rails oder ASP.NET MVC)
- Object-Relational Mapping (z.B. Hibernate, Sequelize oder Linq)
- Webservices (z.B. REST oder SOAP)
- Messaging Services (z.B. JMS, ActiveMQ oder MSMQ)
- Skalierbarkeit testen (z.B. Grinder oder JMeter)
- Semantische Datenmodellierung - Theorie und Praxis –
- Einführung in Datenbank-Entwicklungswerkzeuge (z.B. SQL Developer, …)
- syntaktischen Grundlagen der Datenbankprogrammierung: Cursors, Prozeduren, Funktionen, Objekte, Trigger, (z.B. mit Oracle PLSQL, …)
- Erstellen von Programmteilen

Literatur:
- C.J. Date: An Introduction to Database Systems, Addison-Wesley, Boston, 2004
- Gottfried Vossen, Datenmodelle, Datenbanksprachen undDatenbankmanagementsysteme, Oldenbourg, München, 2000
- Mario Piattini, Oscar Diaz, Advanced Database Technology and Design, Artech House, Boston, 2000
- Oracle PL/SQL: Das umfassende Handbuch, Galileo Computing, 2010
- Marco Skulschus, Marcus Wiederstein: Oracle PL/SQL, Comelio Medien, 2011
- Lano, R.P.: Variationen zum Thema: Internet
- Stark, Thomas: J2EE Master Class. Einstieg für Anspruchsvolle
- Bauer, C. and King, G.: Java Persistence with Hibernate
- Richardson, Leonard and Ruby, Sam: RESTful Web Services
Workload
- 90 Std. Präsenz in Lehrveranstaltungen und Übungen
- 80 Std. Erstellung von Übungsprogrammen und Programmlösungen
- 45 Std. regelmäßige Nachbereitung des Lehrstoffes
- 35 Std. Literaturstudium und freies Arbeiten
- 20 Std. Prüfungsvorbereitung

= 270 Stunden / 9 Leistungspunkte

Umfang:
8 SWS

Lehrveranstaltungen:
4 SWS Seminaristischer Unterricht + 4 SWS Praktikum

Sprache
- Englisch
- Deutsch

Prüfung:
Schriftliche Prüfung 120 Min.
MPO2 Audio- und Videotechnik

Modulverantwortung: Prof. Dr. Brünig

Voraussetzungen:

- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 2 Physical Computing
 - Nr. 3 Multimedia
 - Nr. 16 Informations- und Systemtheorie

Lernziele:

- Kenntnis von basistechnologischen Grundlagen der Medientypen Audio und Video
- Fähigkeit zum Einsatz in multimedialen Systemen und Anwendungen

Inhalte:

- Datenkompression, Datenformate und Speichertechnologien
- Verfahren und Vorgehensweisen bei der Aufnahme und Bearbeitung von Audio und Video
- Technik der Aufnahmegeräte (Kamera, Mikrofon, ...)
- Technik zur Bearbeitung der Medien (Mischpult, Schnittsoftware, ...)
- Effekte der Audiobearbeitung
- Workflow der Audio- und Videobearbeitung
- Beleuchtung und akustische Raumgestaltung
- Praktische Anwendungsbeispiele

Literatur:

- Smyrek, V.: Tontechnik für Veranstaltungstechniker in Ausbildung und Praxis, Hirzel, 2009
- Dickreiter, M.; Dittel, V.; Hoeg, W., und Wöhr, M.: Handbuch der Tonstudientechnik Band 1 und 2, De Gruyter Saur Verlag

Workload

- 90 Std. Präsenz in Lehrveranstaltungen und Übungen
- 180 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung, freies Arbeiten im Labor und Literaturstudium, Vorbereitung von Ausarbeitungsarbeiten von Praktikumsversuchen

\[= 270 \text{ Stunden} / 9 \text{ Leistungspunkte}\]

Umfang:

8 SWS

Lehrveranstaltungen:

4 SWS Seminaristischer Unterricht + 4 SWS Praktikum

Sprache

☐ Englisch ☒ Deutsch

Prüfung:

Schriftliche Prüfung 120 Min.
19 Interdisziplinäres Projekt I

Modulverantwortung: Prof. Dr. Röttger

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Details zu den Teilmodulen sind nachfolgend aufgeführt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>330 Stunden / 11 Leistungspunkte pro Projekt</td>
</tr>
<tr>
<td>Umfang:</td>
<td>10 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Projektarbeit und Seminar</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
</tbody>
</table>
19.1 Projekt I

Modulverantwortung: Prof. Dr. Röttger

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus den exemplarischen Vertiefungen

Lernziele:
- Fähigkeit zur Anwendung gelernter Methoden und Techniken.
- Fähigkeit zur Teamarbeit, soziale Kompetenz, Dialogfähigkeit, Kritikfähigkeit.
- Fähigkeit, ein Entwicklungsprojekt mittlerer Größe erfolgreich durchzuführen.
- Fähigkeit zur Ist-, Anforderungs- und Aufwandsanalyse.
- Fähigkeit, ein größeres System zu strukturieren und in mehreren Teams zu bearbeiten.
- Fähigkeit zur Teambildung und -organisation.
- Fähigkeit, den Entwicklungsablauf zu planen und zu kontrollieren.
- Fähigkeit, technische Kenntnisse nach Bedarf einzusetzen.

Inhalte
- Praxisbezogene und experimentelle Bearbeitung komplexer Projekte aus dem medialen Bereich.
- Einüben von Schlüsselqualifikationen auf all den Gebieten des Arbeitsprozesses:
 - Organisation eines Projekts
 - Teamführung und Konfliktlösungsstrategien
 - Methoden und Techniken der Entscheidungsfindung
 - Wirtschaftlichkeitsanalyse
 - Projektdokumentation und Projektkommunikation (ggf. in englischer Sprache)
 - Präsentationstechniken (ggf. in englischer Sprache)
 - Problemanalyse
 - Anwendung von rechnergestützten Entwurfsmethoden

Workload
- Erstellen von Versuchsaufbauten und Programmen sowie deren Anwendung, Test und Auswertung
- Anfertigen der Projektdokumentation sowie Präsentation der Projektarbeit
- Literaturstudium
 = 270 Stunden / 9 Leistungspunkte pro Projekt

Umfang:
8 SWS

Lehrveranstaltungen:
Projektarbeit und Seminar

Sprache
☐ Englisch ☒ Deutsch

Prüfung:
Prüfungsstudienarbeit
19.2 Präsentationstechnik und Rhetorik

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Kennen und Anwenden der Grundregeln einer Präsentation
- Fähigkeit verschiedene Medien einsetzen zu können
- Sprache und Auftreten situationsangepasst
- Fachkompetenz: Fachpräsentation erarbeiten und referieren
- Sozialkompetenz: Wissen an Gruppe vermitteln, Adjustierung an Gruppe

Inhalte:
- Rhetorische Übungen zur Präsentation von Arbeitsergebnissen. Einsatz von audiovisuellen Medien
- Arten einer Präsentation
- Aufbau und Planung einer Präsentation
- Basiselemente: Schriften, Farben, Auflösung
- Möglichkeiten der Sprache und des Auftretens
- Umgang mit verschiedenen Medien

Literatur:
- Scheler, U.: Informationen präsentieren, Gabal Verlag, Offenbach 1997
- Hierhold, E.: Sicher präsentieren - wirksamer vortragen, Überreuter Verlag, August 2002

Workload
- 23 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 37 Std. Regelmäßige Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
 = 60 Stunden / 2 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- 2 SWS Seminar

Sprache
- ☒ Englisch
- ☐ Deutsch

Prüfung:
- Ausarbeitungen, Abschlusspräsentation von 15-30 Min. Dauer zzgl. Diskussion
20 Wissenschaftliches Arbeiten

Modulverantwortung: Prof. Dr. Mehl

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Kenntnisse und Fähigkeiten aus folgenden Modulen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Nr. 7 Gestaltung- und Medienlehre II</td>
</tr>
<tr>
<td></td>
<td>- Nr. 9 Digitale Medien</td>
</tr>
</tbody>
</table>

Lernziele:	Kenntnisse der Grundlagentechniken des wissenschaftlichen Arbeitens.
	Fähigkeit, die geltenden handwerklichen Normen vor dem Hintergrund wissenschaftstheoretischer Positionen zu beurteilen.
	Fähigkeit, bei einem vorliegenden Text zu bewerten, ob dieser formal den Anforderungen wissenschaftlichen Arbeitens genügt.
	Kenntnisse der Techniken des aktiven und selektiven Lesens und Fähigkeit, diese anzuwenden.

Inhalte:	Was ist Wissenschaft?
	Karl Popper und der Kritische Rationalismus
	Die Rezeption wissenschaftlicher Texte
	Überblick über die wissenschaftlichen Textgattungen
	Die wissenschaftliche Arbeit
	Themenfindung und Themenabgrenzung
	Recherche
	Literaturverwaltung
	Gliederung
	Zitieren und Quellenangaben

Workload	22,5 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
	67,5 Std. Vor- und Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
	= 90 Stunden / 9 Leistungspunkte

| Umfang: | 2 SWS |

| Lehrveranstaltungen: | 2 SWS Seminaristischer Unterricht |

| Sprache | ☐ Englisch ☒ Deutsch |

| Modulfrequenz: | ☒ Wintersemester ☐ Sommersemester |

| Prüfung: | Prüfungsstudienarbeit |
21 Ergonomie und Usability Engineering

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 11 Programmieren III

Lernziele:
- Überblick über Modelle zur Bewertung von SW – Qualität, Kenntnis von Maßstäben zur Feststellung von SW – Qualität,
- Kenntnis über Grundprinzipien des Software- und Usabilitytests, Kenntnis der phasenspezifischen Testmethoden, Fähigkeit zur Durchführung von Tests
- Kenntnis über Konzepte des Usability Engineering
- Wesentliche Methoden und Techniken des Prototyping und der Usability Evaluation kennen,
- Usability Methoden einsetzen können

Inhalte:
- Software – Metriken, Produktnmetriken, Prozessmetriken, Usability-Metriken, Bewertungskriterien, Methoden und Vorgehensweisen zur Bewertung der Benutzerfreundlichkeit von Dialogsystemen.
- Integration von Usability Engineering in den Softwareengineering Prozess (vom Requirements Engineering bis zum Test), Vorgehensmodelle: V-Modell, agile Vorgehensmodelle, Usage Centered Design,
- Test:: Funktions-Test und Usability Test Grundlagen des Softwaretestens, Testen im Softwarelebenszyklus, Usability Evaluation, Testmanagement und Testorganisation (Organisation von Testteams, Testplanung, Testdurchführung, Fehlermanagement),
- Wahrnehmungspychologie und Gestaltungsgrundlagen: Kognition, Wahrnehmungspychologie, Motivationspsychologie, Grundlagen der Mensch - Computer Kommunikation, Einführung in User Interface Design, grundlegende Konzepte von User Interface Design,
- Normen und Standards: Ergonomie der Mensch-System-Interaktion, Grundsätze der Ergonomie für die Gestaltung von Arbeitssystemen, Software engineering — Software product Quality Requirements and Evaluation (SQuaRE)
- Prototyping: Erstellen von Prototypen zur Entwicklung hochwertiger User Interfaces zu entwickeln. Prototyping Tools
- Usability Praktikum: Methoden des Prototyping und der Usability Evaluation in praktischen Beispielen
Literatur:

- Christof Ebert, Reiner Dumke, Manfred Bundschuh, Andreas Schmietendorf: Best Practice in Software Measurement, Springer, 2005
- Michael Herczeg: Software Ergonomie: Oldenbourg, 2005
- Georg Erwin Thaller: Software-Test – Verifikation und Validation, Heise, 2002
- Jakob Nielsen: Usability Engineering, Morgan Kaufmann, 1993
- Ben Shneiderman, Catherine Plaisant: Designing the User Interface, Addison Wesley, 2009
- Donald A. Norman: Living with Complexity, The MIT Press, 2011
- David Benyon: Designing Interactive Systems Addison-Wesley, 2010
- Dan Saffer: designing for interaction, New Riders, 2010
- Jennifer Tidwell: Designing Interfaces, O’Reilly, 2011
- Johannes Itten, Kunst der Farbe. Studienausgabe: Subjektives Erleben und objektives Erkennen als Wege zur Kunst, Englisch Verlag (Gebundene Ausgabe - Juni 2010)
- Inga E. Reeps: Joy-of-Use – Ästhetik, Emotion und User Experience für interaktive Produkte, VDM Verlag Dr. Müller, Saarbrücken, 2006
- Jakob Nielsen, Hoa Loranger: Web Usability, Verlag Addison-Wesley, deutsche Ausgabe 2006
<table>
<thead>
<tr>
<th>Workload</th>
<th>67.5 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.5 Std. Vor- und Nachbereitung des Lehrstoffes,</td>
</tr>
<tr>
<td></td>
<td>40 Std. Literaturstudium und freies Arbeiten</td>
</tr>
<tr>
<td></td>
<td>30 Std. Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>210 Stunden / 7 Leistungspunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umfang:</th>
<th>6 SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
<th>4 SWS Seminaristischer Unterricht + 2 SWS Praktikum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>☐ Englisch ☒ Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulfrequenz:</th>
<th>☐ Wintersemester ☒ Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung:</th>
<th>Schriftliche Prüfung 90 Min.</th>
</tr>
</thead>
</table>
22 Exemplarische Vertiefung III - Fachwissenschaftliche WPF der Gruppe 1

Voraussetzungen:
- Kenntnisse und Fähigkeiten nach Modulbeschreibung

Lernziele:
Die fachwissenschaftlichen Wahlpflichtmodule der Gruppe 1 dienen der fachlichen Vertiefung in einem aktuellen Arbeitsgebiet. Da insgesamt (in den Modulen 15 und 18 „Exemplarische Vertiefung“ Teil 1 + 2) 24 SWS zur Verfügung stehen, sind drei Module zu wählen.

Beispiele für Vertiefungsmodule:
- MTE3 Multimediaapplikationen oder MPO3 Technischer Journalismus

Workload
- Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- Regelmäßige Nachbereitung des Lehrstoffes
- Vorbereitung von Versuchen und Präsentationen
- Erstellung von Lösungen und Ausarbeitungen
- Literaturstudium und freies Arbeiten
- Prüfungsvorbereitung

= 270 Stunden / 9 Leistungspunkte

Umfang:
8 SWS

Lehrveranstaltungen:
Je nach Modul: Seminaristischer Unterricht, Praktikum, Übung oder Seminar

Sprache
- Englisch
- Deutsch

Modulfrequenz:
- Wintersemester
- Sommersemester

Prüfung:
Schriftliche Prüfung 90-120 Min.
MTE3 Multimediaapplikationen

Modulverantwortung: Prof. Dr. Hopf, Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 9 Digitale Medien
 - Nr. 11 Programmieren III
 - Nr. 13 Datenbanken
 - Nr. 14 Datennetze

Lernziele:
- Fähigkeit eine Multimediaanwendung mit aktuellen Multimediatechnologien zu konzipieren und praktisch umzusetzen
- Verständnis clientseitiger Webtechnologien
- Verständnis mobiler Anwendungsplattformen und Datenbanken

Inhalte:
- Verständnis der Hintergründe beim modernen Interface Design (auch UI)
- Rich-Internet-Applikationen (RIA)
- Präsentation multimedialer Inhalte, (auch Simulationen oder Spiele)
- Vertrautheit mit modernen clientseitigen Webtechnologien und Frameworks
- Vermarktung mobiler Anwendungen
- Sicherheitsaspekte webbasierter und mobiler Anwendungen

Literatur:
- Lano, R.P.: Variationen zum Thema: Android
- Daniel H. Steinberg (Autor), Eric T. Freeman, iPad-Programmierung, O'Reilly, 2011
- Ed Burnette, Hello, Android, O'Reilly, 2009
- Community Experts, jQuery Kochbuch von jQuery, O'Reilly, 2010

Workload:
- 90 Std. Präsenz in Lehrveranstaltungen und Übungen
- 180 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung, freies Arbeiten im Labor und Literaturstudium, Vorbereitung von Ausarbeitung von Praktikumsversuchen
 - 270 Stunden / 9 Leistungspunkte

Umfang: 8 SWS

Lehrveranstaltungen: 4 SWS Seminaristischer Unterricht + 4 SWS Praktikum

Sprache
- Englisch ☒ Deutsch

Modulfrequenz:
- ☐ Wintersemester ☒ Sommersemester

Prüfung:
- Schriftliche Prüfung 120 Min.
MPO3 Technischer Journalismus

Modulverantwortung: Prof. Kaiser

<table>
<thead>
<tr>
<th>Voraussetzungen</th>
<th>Kenntnisse und Fähigkeiten aus Fachoberschulniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele</td>
<td>Die Studierenden besitzen grundlegende Kenntnisse über journalistische Arbeitsweisen und Tools.</td>
</tr>
<tr>
<td></td>
<td>Sie sind in der Lage auf Basis dieser Kenntnisse die technischen Erfordernisse in der Zusammenarbeit mit Journalisten zu beurteilen und umzusetzen.</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden haben erste eigene Erfahrungen mit der Produktion eigener journalistischer Werkstücke gesammelt.</td>
</tr>
<tr>
<td></td>
<td>Sie sind in der Lage medienethische Fragestellungen zu diskutieren.</td>
</tr>
<tr>
<td>Inhalte</td>
<td>Überblick über die journalistischen Arbeitsweisen, Recherche und Textformen mit ersten Übungen zum journalistischen Schreiben (Print und Online); Technikberichterstattung</td>
</tr>
<tr>
<td></td>
<td>Grundfragen von Medienethik; Verantwortung des Journalisten</td>
</tr>
<tr>
<td></td>
<td>Einflussnahme durch politische und wirtschaftliche Interessen; Zensur, Pressekodex</td>
</tr>
<tr>
<td></td>
<td>Zulässigkeit von Methoden im Journalismus (Recherche, Darstellung, Bearbeitung)</td>
</tr>
<tr>
<td></td>
<td>Nachrichtenselektion Internetethik, Internationales Mediensystem und Ethik</td>
</tr>
<tr>
<td>Workload</td>
<td>90 Std. Präsenz in Lehrveranstaltungen und Übungen</td>
</tr>
<tr>
<td></td>
<td>180 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung, freies Arbeiten im Labor und Literaturstudium, Vorbereitung von Ausarbeitung von Praktikumsversuchen</td>
</tr>
<tr>
<td></td>
<td>= 270 Stunden / 9 Leistungspunkte</td>
</tr>
<tr>
<td>Umfang</td>
<td>8 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>4 SWS Seminaristischer Unterricht + 4 SWS Praktikum</td>
</tr>
<tr>
<td>Sprache</td>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
<tr>
<td>Modulfrequenz</td>
<td>☐ Wintersemester ☒ Sommersemester</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Schriftliche Prüfung 90 Min.</td>
</tr>
</tbody>
</table>
23 Interdisziplinäres Projekt II

Modulverantwortung: Prof. Dr. Röttger

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>Details zu den Teilmodulen sind nachfolgend aufgeführt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>330 Stunden / 11 Leistungspunkte pro Projekt</td>
</tr>
<tr>
<td>Umfang:</td>
<td>10 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>Projektarbeit und Seminar</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☐ Wintersemester ☒ Sommersemester</td>
</tr>
</tbody>
</table>
23.1 Projekt II

Modulverantwortung: Prof. Dr. Röttger

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus den exemplarischen Vertiefungen I und II
- Kenntnisse und Fähigkeiten aus folgendem Modul:
 - Nr. 19 Interdisziplinäres Projekt I

Lernziele:
- Fähigkeit zur Anwendung gelernter Methoden und Techniken.
- Fähigkeit zur Teamarbeit, soziale Kompetenz, Dialogfähigkeit, Kritikfähigkeit.
- Fähigkeit, ein Entwicklungsprojekt mittlerer Größe erfolgreich durchzuführen.
- Fähigkeit zur Ist-, Anforderungs- und Aufwandsanalyse.
- Fähigkeit, ein größeres System zu strukturieren und in mehreren Teams zu bearbeiten.
- Fähigkeit zur Teambildung und -organisation.
- Fähigkeit, den Entwicklungsablauf zu planen und zu kontrollieren.
- Fähigkeit, technische Kenntnisse nach Bedarf einzusetzen.

Inhalte:
- Praxisbezogene und experimentelle Bearbeitung komplexer Projekte aus dem medialen Bereich.
- Einüben von Schlüsselqualifikationen auf allen Gebieten des Arbeitsprozesses:
 - Organisation eines Projekts
 - Teamführung und Konfliktlösungsstrategien
 - Methoden und Techniken der Entscheidungsfindung
 - Wirtschaftlichkeitsanalyse
 - Projektdokumentation und Projektkommunikation (ggf. in englischer Sprache)
 - Präsentationstechniken (ggf. in englischer Sprache)
 - Problemanalyse
 - Anwendung von rechnergestützten Entwurfsmethoden

Workload:
- Erstellen von Versuchsaufbauten und Programmen sowie deren Anwendung, Test und Auswertung
- Anfertigen der Projektdokumentation sowie Präsentation der Projektarbeit
- Literaturstudium
 = 270 Stunden / 9 Leistungspunkte pro Projekt

Umfang: 8 SWS

Lehrveranstaltungen: Projektarbeit und Seminar

Sprache:
- Englisch
- Deutsch

Prüfung: Prüfungsstudienarbeit
23.2 Marketing

Modulverantwortung: Prof. Dr. Brambach

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Einblick in die Marketingmethoden
- Kenntnisse über die Funktion der Werbung und über die übrigen Maßnahmen planmäßiger Absatzpolitik
- Einsicht in betriebliche Absatzmarktorientierung
- Befähigung, absatzmarktorientierte Lösungen zu entwickeln
- Internationaler Wettbewerb in den Medienbranchen

Inhalte:
- Grundbegriffe des Marketing und der Marktforschung
- Funktion des Marketinginstrumentariums
- Rolle der Werbung
- Werbeplanung, Werbekampagnen und Werbeerfolgskontrolle

Literatur:

Workload
- 23 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 37 Std. Regelmäßige Nachbereitung des Lehrstoffes, Prüfungsvorbereitung
 = 60 Stunden / 2 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht

Sprache
- ☑ Englisch ☒ Deutsch

Prüfung:
- Klausur 90 Minuten oder Befragung 20 Minuten
24 Ergänzende Vertiefung - Fachwissenschaftliche WPF der Gruppe 2

Voraussetzungen:
- Kenntnisse und Fähigkeiten nach Fachbeschreibung

Lernziele:
Die fachwissenschaftlichen Wahlpflichtfächer dienen der Vermittlung aktueller vertiefter Kenntnisse aus dem technischen Umfeld. Das jeweils aktuelle Angebot wird durch Aushang bekannt gegeben.

Workload
- Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- Regelmäßige Nachbereitung des Lehrstoffes
- Vorbereitung von Versuchen und Präsentationen
- Erstellung von Lösungen und Ausarbeitungen
- Literaturstudium und freies Arbeiten
- Prüfungsvorbereitung

= 75 Stunden / 2,5 Leistungspunkte pro Fach

Umfang:
2 FWPF mit je 2 SWS

Lehrveranstaltungen:
Je nach Modul: Seminaristischer Unterricht, Praktikum, Übung oder Seminar

Sprache
- ☐ Englisch
- ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester
- ☐ Sommersemester

Prüfung:
Klausur 90 Minuten oder Befragung 30 Minuten
25 Fachübergreifende Qualifikation

Details zu den Teilmodulen sind nachfolgend aufgeführt

<table>
<thead>
<tr>
<th>Workload</th>
<th>300 Stunden / 10 Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfang:</td>
<td>10 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>8 SWS Seminaristischer Unterricht + 2 SWS Praktikum</td>
</tr>
<tr>
<td>Sprache</td>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
</tbody>
</table>
25.1 Medienrecht

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
- Kenntnis der Medienfreiheiten in Presse, Rundfunk, Film, und insbes. Multimediasystemen und Internet
- Kenntnis der Regelungsziele und Überblick über die Regelungen des Medienrechts und des Telekommunikationsrechts
- Fähigkeit, die Verwendung von Medien in Softwareanwendungen auf rechtlicher Grundlage einzuschätzen

Inhalte:
- Medienfreiheiten und -beschränkungen
- Sicherung einer zugänglichen Kommunikationsinfrastruktur
- Sicherung der Meinungsvielfalt
- Regelungen des Persönlichkeitsrechts, des Daten- und Jugendschutzes
- Schutz des geistigen Eigentums

Literatur:

Workload
- 23 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 37 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung
 - 60 Stunden / 2 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht

Sprache
- ☑ Englisch ☒ Deutsch

Modulfrequenz:
- ☑ Wintersemester ☐ Sommersemester

Prüfung:
- Klausur 90 Minuten oder Befragung 20 Minuten
25.2 Trends in Media Engineering

Modulverantwortung: Prof. Dr. Lano

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus folgenden Modulen:
 - Nr. 11 Programmieren III
 - Nr. 20 Wissenschaftliches Arbeiten

Lernziele:
- Die Studierenden lernen selbständig ein Fachgebiet zu erarbeiten, entweder durch Erarbeitung einer E-Learning Einheit, durch Durchführung eines Forschungsprojekts oder durch die Erstellung eines Produktes.
- Sie bauen ihre Kompetenzen im Bereich des selbstgesteuerten Lernens mit Praxisrelevanz aus.

Inhalte:
- Themen im Bereich Informatik, Ingenieurwissenschaften oder Medien können gewählt werden

Literatur:
- Eine detaillierte Liste wird den Studierenden zu Beginn der Vorlesungszeit bekannt gemacht werden.

Workload
- 45 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 75 Std. Regelmäßige Nachbereitung des Lehrstoffes
 $= 120$ Stunden / 4 Leistungspunkte

Umfang:
- 4 SWS

Lehrveranstaltungen:
- 4 SWS Seminaristischer Unterricht

Sprache
- ☒ Englisch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Ausarbeitungen, Abschlusspräsentation von 15-30 Min. Dauer zzgl. Diskussion
25.3 Allgemeinwissenschaftliche Wahlpflichtfächer (AWPF)

Modulverantwortung:
Prof. Dr. Hopf

Voraussetzungen:
Kenntnisse und Fähigkeiten auf Fachoberschulniveau

Lernziele:
Die allgemeinwissenschaftlichen Wahlpflichtfächer dienen der Förderung der Allgemeinbildung auf den Gebieten:
- Recht und Wirtschaft
- Sprachen
- Persönlichkeitsbildung
- Technik und Gesellschaft
- Geschichte und Politik

Das jeweils aktuelle Angebot wird durch Aushang bekannt gegeben.

Workload
- Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- Regelmäßige Nachbereitung des Lehrstoffes
- Vorbereitung von Versuchen und Präsentationen
- Erstellung von Lösungen und Ausarbeitungen
- Literaturstudium und freies Arbeiten
- Prüfungsvorbereitung

= 60 Stunden / 2 Leistungspunkte pro Fach

Umfang:
2 AWPF mit je 2 SWS

Lehrveranstaltungen:
Je nach Modul: Seminaristischer Unterricht, Praktikum, Übung oder Seminar

Sprache
- Englisch
- Deutsch

Modulfrequenz:
- Wintersemester
- Sommersemester

Prüfung:
Klausur 90 Minuten oder Befragung 20-30 Minuten
<table>
<thead>
<tr>
<th>Modul: Abschlussarbeit</th>
<th>Modulverantwortung: Prof. Dr. Janker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details zu den Teilmodulen sind nachfolgend aufgeführt</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>450 Stunden / 15 Leistungspunkte</td>
</tr>
<tr>
<td>Umfang:</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td>Sprache</td>
<td>☒ Englisch ☐ Deutsch</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☒ Wintersemester ☐ Sommersemester</td>
</tr>
</tbody>
</table>
26.1 Bachelorarbeit

Modulverantwortung: Prof. Dr. Janker

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus den themenbezogenen Modulen der fachwissenschaftlichen Vertiefung
- Kenntnisse und Erfahrungen aus der Projektarbeit (Nr. 19 u. 23)

Lernziele:
- Fähigkeit, ein praxisbezogenes Problem aus dem medialen Bereich fachübergreifend, selbständig auf wissenschaftlicher Grundlagen methodisch zu bearbeiten.

Inhalte
- Die Bachelorarbeit wird inhaltlich durch die angebotenen Lehrveranstaltungen vorbereitet

Workload
- Konzept und Projektplan erstellen.
- Erstellen von Versuchsaufbauten und Programmen sowie deren Anwendung, Test und Auswertung
- Anfertigung der Abschlussarbeit
- Literaturstudium

 = 360 Stunden / 12 Leistungspunkte

Umfang:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Bachelorarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td>Englisch ☐ Deutsch ☒</td>
</tr>
<tr>
<td>Modulfrequenz</td>
<td>Wintersemester ☒ Sommersemester ☐</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Bachelorarbeit</td>
</tr>
</tbody>
</table>

BME_Modulhandbuch.odt Seite 49 / 56 Studiengangsleiter: Prof. Dr. Lano
26.2 Bachelorseminar

Modulverantwortung: Prof. Dr. Janker

Voraussetzungen:
- Kenntnisse und Fähigkeiten aus den themenbezogenen Modulen der fachwissenschaftlichen Vertiefung
- Kenntnisse und Erfahrungen aus der Projektarbeit (Nr. 19 u. 23)

Lernziele:
- Begleitung der Abschlussarbeit zur sachkundigen und selbständigen Reflexion der gewonnenen Erfahrungen mit dem Ziel, Entscheidungen unter Berücksichtigung technischer, wirtschaftlicher und ökologischer Gesichtspunkte sowohl selbständig als auch im Team treffen zu können.

Inhalte
- Anleitung zur systematischen wissenschaftlichen Arbeit durch
 - Erfahrungsaustausch
 - Vertiefung und Sicherung der Erkenntnisse
 - Kurzreferate während der Arbeit
 - Abschlussreferat mit Diskussion

Workload
- Vorbereitung und Durchführung der Kurzreferate.
- Vorbereitung und Durchführung des Abschlussreferats
 - 90 Stunden / 3 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- Seminar

Sprache
- ☐ Englisch ☒ Deutsch

Modulfrequenz:
- ☒ Wintersemester ☐ Sommersemester

Prüfung:
- Ausarbeitungen, Abschlusspräsentation von 15-30 Min. Dauer zzgl. Diskussion
27 Praxissemester

Details zu den Teilmodulen sind nachfolgend aufgeführt

<table>
<thead>
<tr>
<th>Workload</th>
<th>900 Stunden / 30 Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umfang:</td>
<td>6 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td>4 SWS Seminaristischer Unterricht + 2 SWS Seminar</td>
</tr>
<tr>
<td>Sprache</td>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
<td>☐ Wintersemester ☒ Sommersemester</td>
</tr>
</tbody>
</table>
27.1 Praxisteil

Modulverantwortung: Prof. Dr. Röttger

Voraussetzungen: 60 Leistungspunkte aus dem ersten Studienabschnitt

Lernziele: Kenntnisse bezüglich der Tätigkeiten und der Arbeitsmethoden eines Ingenieurs in der Praxis des industriellen Umfelds auf allen medialen Gebieten.

Inhalte
In signifikanten medialen Arbeitsgebieten sollen an Hand eines Projekts die Vorgehensweisen und die Problemlösungsstrategien eines Ingenieurs bei der Lösung von Aufgaben vermittelt werden. Das Projekt soll nach Möglichkeit eine einzige Aufgabe beinhalten, die vorzugsweise im Team zu bearbeiten ist; sie kann jedoch Tätigkeiten umfassen, die in verschiedenen Themenbereichen angesiedelt sind.

Workload
Praxistätigkeit
Literaturstudium
= 720 Stunden / 24 Leistungspunkte

Umfang: 20 Wochen zu je 4 Tagen

Lehrveranstaltungen: Projektarbeit

Sprache
☐ Englisch ☒ Deutsch

Modulfrequenz
☐ Wintersemester ☒ Sommersemester
27.2 Praxisseminar

Modulverantwortung: Prof. Dr. Röttger

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
<th>60 Leistungspunkte aus dem ersten Studienabschnitt</th>
</tr>
</thead>
</table>

Lernziele:
- Begleitung des Industrieprojekts zur sachkundigen und selbständigen Reflexion der gewonnenen Erfahrungen mit dem Ziel, Entscheidungen unter Berücksichtigung technischer, wirtschaftlicher und ökologischer Gesichtspunkte treffen zu können.
- Fähigkeit zum sicheren Auftreten und zur kompetenten Präsentation.

Inhalte
- Erfahrungsaustausch, Anleitung und Beratung, Vertiefung und Sicherung der Erkenntnisse, insbesondere durch Kurzreferate der Studenten über ihre praktische Arbeit, durch Fragestellung und Diskussion, durch Aufgabenstellung und Erläuterungen.
- Rhetorische Übungen zur Präsentation von Arbeitsergebnissen.
- Einsatz von audiovisuellen Medien.

Workload
- Vorbereitung und Durchführung von Kurzreferaten = 60 Stunden / 2 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- Seminar

Sprache
- ☒ Deutsch

Modulfrequenz:
- ☒ Sommersemester

Prüfung:
27.3 Lehrveranstaltungen zum Praxisseminar

Modulverantwortung: Prof. Dr. Röttger

<table>
<thead>
<tr>
<th>Exemplarische Angebote sind nachfolgend aufgeführt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>120 Stunden / 4 Leistungspunkte</td>
</tr>
<tr>
<td>Umfang:</td>
</tr>
<tr>
<td>4 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
</tr>
<tr>
<td>4 SWS Seminaristischer Unterricht</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
<tr>
<td>Modulfrequenz:</td>
</tr>
<tr>
<td>☐ Wintersemester ☒ Sommersemester</td>
</tr>
<tr>
<td>Prüfung:</td>
</tr>
<tr>
<td>Klausur 90 Minuten oder Befragung 20-30 Minuten</td>
</tr>
</tbody>
</table>
27.3.1 Software- und Projektmanagement

Modulverantwortung: Prof. Dr. Röttger

Voraussetzungen:
- 60 Leistungspunkte aus dem ersten Studienabschnitt

Lernziele:
- Einsicht in die Notwendigkeit, durch Einsatz von Managementmethoden und -techniken Projektaufgaben sicher und erfolgreich zu bewältigen
- Kenntnis von Konzepten, Verfahren und Instrumenten für eine rationelle Projektabwicklung

Inhalte:
- Einführung: Managementstrategien und Kontrolle, Projektmanagement
- Projektplanung und -kontrolle: Kostenschätzung, Durchführbarkeit, Termin-, Ressourcen- und Kostenplanung, Lifecycle Costs
- Methoden und Werkzeuge

Literatur:

Workload:
- 23 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen
- 37 Std. regelmäßige Nachbereitung des Lehrstoffes und Prüfungsvorbereitung
= 60 Stunden / 2 Leistungspunkte

Umfang:
- 2 SWS

Lehrveranstaltungen:
- 2 SWS Seminaristischer Unterricht

Sprache:
- ☑ Englisch
- ☒ Deutsch

Modulfrequenz:
- ☐ Wintersemester
- ☒ Sommersemester

Prüfung:
- Klausur 90 Minuten oder Befragung 20 Minuten
27.3.2 Technical and Business English

Modulverantwortung: Prof. Dr. Lano

<table>
<thead>
<tr>
<th>Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 60 Leistungspunkte aus dem ersten Studienabschnitt</td>
</tr>
<tr>
<td>• Kompetenzstufe A2 (reading, listening, speaking, writing)</td>
</tr>
<tr>
<td>• Vorkenntnisse in Englisch auf Abitur-/Fachabiturniveau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dient der Einführung in die Fachsprache der Informatik und der Ingenieurwissenschaften. Alle Sprachfertigkeiten (Hören, Sprechen, Lesen, Schreiben) werden auf Grundlage bereits erworbener allgemeinsprachlicher Kenntnisse mit folgender Zielstellung weiterentwickelt:</td>
</tr>
<tr>
<td>• Verständnis der wesentlichen Gedanken sowohl von Texten mit konkretem als auch abstraktem Inhalt</td>
</tr>
<tr>
<td>• Präsentation von fachsprachlich relevanten Themen</td>
</tr>
<tr>
<td>• Angemessen flüssige Gesprächsführung</td>
</tr>
<tr>
<td>• Textproduktion zu einer Reihe fachlicher Themen</td>
</tr>
<tr>
<td>• Darlegung des eigenen Standpunkts zu einem fachlichen Hauptthema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieser Kurs dient dem Erreichen einer hohen fachsprachlichen Kompetenz auf dem Gebiet des technischen Englisch in allen Sprachfertigkeiten auf der Grundlage gefestigter allgemeinsprachlicher Kenntnisse</td>
</tr>
<tr>
<td>• Erweiterung und Festigung der Vokabelkenntnisse</td>
</tr>
<tr>
<td>• Grammatik: Tenses (active and passive voice), conditional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zur Vorbereitung der Veranstaltung ist jede Erweiterung der eigenen Englisch-Kenntnisse wünschenswert. Eine spezielle Literatur kann jedoch nicht empfohlen werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 23 Std. Präsenz in Lehrveranstaltungen und Leistungsnachweisen</td>
</tr>
<tr>
<td>• 37 Std. Regelmäßige Nachbereitung des Lehrstoffes, Prüfungsvorbereitung</td>
</tr>
<tr>
<td>= 60 Stunden / 2 Leistungspunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umfang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS Seminaristischer Unterricht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Englisch ☒ Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulfrequenz:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Wintersemester ☒ Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur 90 Minuten oder Befragung 20 Minuten</td>
</tr>
</tbody>
</table>