restart;Darstellung von Kurven
<Text-field layout="_pstyle4" style="_cstyle4">Aufgabe 1</Text-field>Die Ellipse x^2/9 + y^2/4 =1 wird gezeichnet (implizite Darstellung)with(plots): implicitplot(x^2/9+y^2/4=1, x=-4..4,y=-3..3, scaling=constrained);LSUlUExPVEc2JS0lJ0NVUlZFU0c2Y3I3JDckJCEzPisrKysrKz9GISM8JCEzTyhSMnVTMkNWKSEjPTckJCEzImZiYmJiSUNzI0YsJCEzLSQqKioqKioqKioqKipSKUYvNyQ3JEYxJCEzIz4qKioqKioqKioqKipSKUYvNyQkITNdL1U/L1U/Q0ZGLCQhMyM9WW8lbyVvJW8kKUYvNyQ3JCQhM3FiYmJiMFZkR0YsJCEzKyMqKioqKioqKioqKioqZkYvRjk3JDckJCEzOWNiYmIwVmRHRixGQjckJCEzJyopZm8lSHg/NkhGLCQhMyVIXSYpKkc/JWZjJUYvNyQ3JCQhM2NiYmJiMFZaSEYsJCEzMyMqKioqKioqKioqKipmJEYvRkg3JDckJCEzK2NiYmIwVlpIRiwkITNrIyoqKioqKioqKioqKmYkRi83JCQhM2Nra2tra2slKUhGLCQhMzc2Ojo6Ojo6O0YvNyQ3JCQhM1tiYmJiMFYjKkhGLCQhMz0jKioqKioqKioqKioqPiJGL0ZZNyRGaW43JEZqbiQiM2gpb21tbSJISyUpISM+NyQ3JEZqbiQiM3MyKysrKysrN0YvRl9vNyRGZG83JCQhMyM+Vil5RUslKWVIRiwkIjM3WEsiND9DOCpIRi83JDckRk8kIjNpMisrKysrK09GL0ZobzckRl5wNyQkITNNXXgxdm5dKCpHRiwkIjNoSyIzSSIzSUpcRi83JDckJCEzQ2JiYmIwVmRHRiwkIjNhMisrKysrK2dGL0ZicDckRmhwNyQkITNvY1dsY1dsO0dGLCQiMyl5VTNcVTNccydGLzckNyQkITMtYmJiYjBWQUZGLCQiM2MzKysrKysrJSlGL0ZecTckNyRGZXEkIjNZMisrKysrKyUpRi83JCQhM3RiYmJiYmJARkYsJCIzXnBtbW1tbTYlKUYvNyQ3JCQhM2srKysrKys/RkYsJCIzcCt1UzJ1U0slKUYvRl1yNyQ3JCQhM3krKysrKysrQ0YsJCEzRyoqKioqKioqKioqUj4iRiw3JCQhM3ArKyt2VkI/REYsJCEzPSoqKioqKioqKioqKno1Riw3JDckJCEzOSwrK3ZWQj9ERixGYXM3JEZkciQhM1opUjJ1UzJDVilGLzckRmNyNyQkITNBV0JSLWJsKGYjRiwkIjNLJmVVekU7QykpKkYvNyQ3JCQhM08qKioqKlxQTS1fI0YsJCIzJzQrKysrKyszIkYsRlt0NyQ3JEZidCQiM3UrKysrKyshMyJGLDckJCEzPVt1LF8+OG5DRiwkIjNRJzM4UycqWy44IkYsNyQ3JEZqciQiMy8qKioqKioqKioqKlI+IkYsRmp0NyQ3JCQhMyc0KysrKysrMyNGLCQhMyRRQix6Y01pViJGLDckJCEzRSwrKytdN1tBRiwkITM8KioqKioqKioqKioqPjhGLDckNyQkITMjMysrKytEIltBRiwkITMmKikqKioqKioqKioqKj44RixGaXI3JEZgdTckJCEzMjYmKWVtV0I/QkYsJCIzSyRRVCpcZTxnN0YsNyQ3JCQhMy8qKioqKioqKlw3W0FGLCQiM3QrKysrKys/OEYsRmV2NyRGW3c3JCQhMyN5JHBHKVJVMTsjRiwkIjNRLl9yKXoiWyFRIkYsNyQ3JEZldSQiMyRRQix6Y01pViJGLEZhdzckNyQkITNvKysrKysrZzxGLCQhM3FEXVhFXVg7O0YsNyQkITNpTUxMTGU5cj1GLCQhMzsqKioqKioqKioqKipmOkYsNyRGYHhGZHU3JEZndzckJCEzKUctYT40O3kpPkYsJCIzPzxiJypvPyczXCJGLDckNyQkITMnPkxMTCRlOXI9RiwkIjNzKysrKysrZzpGLEZneDckRl15NyQkITNmYSNlWTJ6WyE9RiwkIjMpNHAkKmZJZk9mIkYsNyQ3JCQhMzcsKysrKytnPEYsJCIzI2YtYmstYmtoIkYsRmN5NyQ3JCQhMyE0KysrKysrdyJGLCQhMyNmLWJrLWJraCJGLDckJCEzQSR6S3haMXNlIkYsJCEzI1xTKzw5JmYqbyJGLDckNyQkITMkMysrKysrK1ciRiwkITNraFohPncvPnYiRixGZHo3JDckRmB6JCIzOkVdWEVdWDs7Riw3JCQhM0ZLQVlxRGMuO0YsJCIzPXVtJXkjPm4jbyJGLDckNyRGW1tsJCIzVWhaIT53Lz52IkYsRmNbbDckNyQkITN4KysrKysrPzZGLCQhMy8iWyJbIltKRiY9Riw3JCQhM00tKytdKG96SCJGLCQhMzsqKioqKioqKioqKioqeiJGLDckNyRGY1xsJCEzUSoqKioqKioqKioqKip6IkYsRmp6NyRGaVtsNyQkITN3YiQ0LDw/ZVIiRiwkIjMnbywjZUZeJ293IkYsNyQ3JCQhM20oKioqKipcKG96SCJGLCQiM3ErKysrKysrPUYsRlxdbDckNyQkITMheioqKioqXChvekgiRixGZV1sNyQkITNrJlwpM0kjKVJxNkYsJCIzKD5QbURuKXpQPUYsNyQ3JEZeXGwkIjNFIlsiWyJbSkYmPUYsRltebDckRl1cbDckJCEzOlgjKUg+eDM/NUYsJCEzI2VKRTBATVwoPUYsNyQ3JCQhMzMyKysrKysrISlGLyQhM2cjZiNmI2ZVUSM+RixGZV5sNyRGYV5sNyQkITMlPl80UV80UUYqRi8kIjNLOWRHOWRgJio9Riw3JDckRlxfbCQiM1EjZiNmI2ZVUSM+RixGYV9sNyRGW19sNyQkITN1J28yQnAyQiVmRi8kITNNQnAyQnBLYT5GLDckNyQkITMvMisrKysrK1tGLyQhMycqKioqKioqKioqXDcoPkYsRltgbDckRmdfbDckJCEzKT0keSM0LixucSdGLyQiM2YoZT50ZC1JJT5GLDckNyRGYmBsJCIzJyoqKioqKioqKipcNyg+RixGZ2BsNyQ3JCQhM1sxKysrKysrW0YvRmRgbDckJCEzQXhWO2MkUWtFI0YvJCEzTXJ3R0JyLCEqPkYsNyQ3JCQhMydwKysrKysrZyJGLyQhM3MuUHEuUCZcKj5GLEZkYWw3JEZdYWw3JCQhMz9ZJ3lxTElkJ1JGLyQiMyMqKSozR3YoSHUoPkYsNyQ3JCQhM0MyKysrKysrO0YvJCIzcy5QcS5QJlwqPkYsRmBibDckNyRGZ2JsJCEzJVJxLlBxYFwqPkYsNyQkIjNZLVJcZ3IjUSoqKkZib0ZdY2w3JDckJCIzNSQqKioqKioqKioqKipmIkYvRl1jbEZfY2w3JDckRltibCQiM10uUHEuUCZcKj5GLDckJCEzIzR3JFxnciNRKioqRmJvRmhjbDckNyRGZGNsRmlibEZqY2w3JEZjY2w3JCQiM3VjJ3lxTElkJ1JGLyQhMyMqKSozR3YoSHUoPkYsNyQ3JCQiMzskKioqKioqKioqKioqeiVGLyQhMz0rKysrK0RyPkYsRmBkbDckRl5kbDckJCIzOypRa2hOUWtFI0YvJCIzN3J3R0JyLCEqPkYsNyQ3JCQiM3MkKioqKioqKioqKioqeiVGL0ZeYWxGXGVsNyRGZmRsNyQkIjN3U3kjNC4sbnEnRi8kITMieWU+dGQtSSU+Riw3JDckJCIzdyQqKioqKioqKioqKioqekYvJCEzJEdmI2YjZlVRIz5GLEZmZWw3JDckRmdkbEZeYWw3JCQiMyYqKXAyQnAyQiVmRi8kIjMhSCNwMkJwS2E+Riw3JDckRl1mbCQiMyRHZiNmI2ZVUSM+RixGY2ZsNyRGXGZsNyQkIjNnRyY0UV80UUYqRi8kITNLOWRHOWRgJio9Riw3JDckJCIzVyoqKioqKioqKioqKj42RiwkITNxIlsiWyJbSkYmPUYsRl1nbDckRmlmbDckJCIzXFkjKUg+eDM/NUYsJCIzI2VKRTBATVwoPUYsNyQ3JEZkZ2wkIjNbIlsiWyJbSkYmPUYsRmlnbDckRmNnbDckJCIzJ2VcKTNJIylScTZGLCQhM19yamNzJyl6UD1GLDckNyQkIjNNLSsrXShvekgiRixGZVxsRmNobDckRmlobDckJCIzVWMkNCw8P2VSIkYsJCEzJ28sI2VGXidvdyJGLDckNyQkIjNdKioqKioqKioqKioqUjlGLCQhMzNpWiE+dy8+diJGLEZdaWw3JDckRmRpbCQiM0lpWiE+dy8+diJGLDckJCIzIXoqKioqKlwob3pIIkYsRmVdbDckRlxqbEZfaGw3JEZjaWw3JCQiM3NLQVlxRGMuO0YsJCEzJ1JuWXkjPm4jbyJGLDckNyQkIjMhKSoqKioqKioqKioqKmY8RiwkITNmRV1YRV1YOztGLEZhamw3JDckRmRpbCQiMzNpWiE+dy8+diJGLDckJCIzSyV6S3haMXNlIkYsJCIzWy8vcVReZipvIkYsNyQ3JCQiM2MqKioqKioqKioqKipmPEYsJCIzZkVdWEVdWDs7RixGYFttNyRGZ2psNyQkIjMiW0RlWTJ6WyE9RiwkITNhIXAkKmZJZk9mIkYsNyQ3JCQiMzFOTExMZTlyPUYsRmN4RlxcbTckRmJcbTckJCIzYUJTJj40O3kpPkYsJCEzKXBebCpvPyczXCJGLDckNyQkIjNpKioqKioqKioqKioqej9GLCQhM3JNNyF6Y01pViJGLEZmXG03JDckRl1dbSQiM3JNNyF6Y01pViJGLDckJCIzJz5MTEwkZTlyPUYsJCIzXSsrKysrK2c6Riw3JDckRmZdbUZgeUZmW203JEZcXW03JCQiM0dRcEcpUlUxOyNGLCQhMzsuX3IpeiJbIVEiRiw3JDckJCIzRSwrKytdN1tBRiwkITNTKioqKioqKioqKioqPjhGLEZdXm03JDckRmRebUZcdjckJCIzXjYmKWVtV0I/QkYsJCEzSyRRVCpcZTxnN0YsNyQ3JCQiM1kqKioqKioqKioqKioqUiNGLCQhM2crKysrKyslPiJGLEZqXm03JDckRmFfbSQiM1ErKysrKyslPiJGLDckJCIzLyoqKioqKioqXDdbQUYsRl53NyRGaV9tRmJdbTckRmBfbTckJCIzaVt1LF8+OG5DRiwkITMkZjM4UycqWy44IkYsNyQ3JCQiMzksKyt2VkI/REYsRmFzRl5gbTckRmRgbTckJCIzbVdCUi1ibChmI0YsJCEzKyNlVXpFO0MpKSpGLzckNyQkIjNKKioqKioqKioqKioqPkZGLCQhMzc6dVMydVNLJSlGL0ZoYG03JDckRl9hbSQiM008dVMydVNLJSlGLzckJCIzTyoqKioqXFBNLV8jRixGaHQ3JEZnYW1GZl9tNyRGXmFtNyQkIjN0YmJiYmJiQEZGLCQhMydSbW1tbW07VClGLzckNyQkIjNOY2JiYjBWQUZGLEY3RlxibTckRmJibTckJCIzb2NXbGNXbDtHRiwkITNXQiUzXFUzXHMnRi83JDckJCIzOWNiYmIwVmRHRixGQkZmYm03JEZcY203JCQiM3ldeDF2bl0oKkdGLCQhMzxHIjNJIjNJSlxGLzckNyQkIjNjYmJiYjBWWkhGLCQhM18iKioqKioqKioqKioqZiRGL0ZgY203JDckRmdjbUZRNyQkIjMjPlYpeUVLJSllSEYsJCEzN1NLIjQ/QzgqSEYvNyQ3JCQiMyNmYmJiYklDKkhGLEZcb0ZdZG03JEZjZG03JEZkZG0kITMtbG1tbTtISyUpRmJvNyQ3JCQiM1tiYmJiMFYjKkhGLEZlb0ZnZG03JEZbZW03JCQiM2Nra2tra2slKUhGLCQiM247Ojo6Ojo6O0YvNyQ3JCQiMzViYmJiMFZaSEYsRl9wRl9lbTckNyRGZ2NtRl9wNyQkIjNTKmZvJUh4PzZIRiwkIjMlel0mKSpHPyVmYyVGLzckNyQkIjNDYmJiYjBWZEdGLEZbcUZqZW03JEZgZm03JCQiM2kuVT8vVT9DRkYsJCIzI0habyVvJW8lbyQpRi83JDckJCIzLWJiYmIwVkFGRixGW3JGZGZtNyRGamZtRmRhbS0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGZGdtRmVnbS0lK0FYRVNMQUJFTFNHNiRRIng2IlEieUZbaG0tJShTQ0FMSU5HRzYjJSxDT05TVFJBSU5FREc=Die Ellipse x(t) = 3*cos(t), y(t)=2*sin(t) wird gezeichnet (Parameterform)plot([3*cos(t),2*sin(t),t=0..2*Pi],scaling=constrained);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdTNyQkIiIkIiIhJEYsRiw3JCQiM1VGJCk9NygzPihIISM8JCIzaUdgNmxqYklGISM9NyQkIjMoUSRwa0gxOS1IRjEkIjNvXCkqPT56ZG1dRjQ3JCQiM2k1JGVPJWZkdUZGMSQiMz9uRXJcMUExd0Y0NyQkIjMlejBSY0ZAZmYjRjEkIjMkSHEhKnk9JVstNUYxNyQkIjNzO0QnKTRjRnJCRjEkIjNiIWYvUzg8XkEiRjE3JCQiM3YvPWZdQXhDQEYxJCIzY3MleSxhMz5UIkYxNyQkIjN3KXomKlFzT1wkPUYxJCIzKUhDLyo0UUUjZSJGMTckJCIzVUdBKm9ZSktdIkYxJCIzZ1FRdkZfITN0IkYxNyQkIjNJWjdTJCo9L1k2RjEkIjNdMT9ALUpKWz1GMTckJCIzLyxXbUcpZWhkKEY0JCIzOXhpKm9pdF4kPkYxNyQkIjMwcWAleVk1YS4lRjQkIjNpPihbRlpCPSk+RjE3JCQhMys2RkBLNEsieiIhIz8kIjMhZkFqTWsqKioqKj5GMTckJCEzQSVcQ3gyWnUzJUY0JCIzI1IqUV9kJVw4KT5GMTckJCEzaG45Ml5rYVF6RjQkIjNaJVFPKTRscUc+RjE3JCQhM2o4JD4kekUkPjgiRjEkIjMnZWJrckl0QCY9RjE3JCQhM0JcbjMjZSVwNzpGMSQiM2JHZGg5cThGPEYxNyQkITNqPW8hSCVvJT0iPUYxJCIzY0snencrWVNmIkYxNyQkITNfdCNIUyFcekVARjEkIjMlPV50P1RhMFQiRjE3JCQhM1d1ZG1oN0VyQkYxJCIzdlRCJ29aSF5BIkYxNyQkITNNJTNWPi0jeihmI0YxJCIzJillJykqPTNHLisiRjE3JCQhMy1PNCU+KTNHcEZGMSQiM2dNdCopUmVdInAoRjQ3JCQhMzFzNiNHMCgzKipHRjEkIjNQKFFIS2wob1ZeRjQ3JCQhMydINERlKzRAKEhGMSQiMzYnMy8sLF0zcyNGNDckJCEzQ3lceXNiKSoqKkhGMSQiM15cVylIKCk9RT8nRmRvNyQkITNtOnBoMDlgc0hGMSQhM1QmPSlSN1BFK0ZGNDckJCEzZ2xnPFMnPkEhSEYxJCEzJTMyXmwwbVgxJkY0NyQkITNrWCo0Um15KnlGRjEkITNTPnFqc3FXTXZGNDckJCEzUCNbSCdSZUQtRUYxJCEzRWBxIUh4ImVeKipGNDckJCEzP3hSUUouI1FRI0YxJCEzIylbZiFRJilbVUAiRjE3JCQhM2AoUkY2eXBKOCNGMSQhMzRXT1RpJnBpUyJGMTckJCEzOWBgLkhmZDk9RjEkITM9RTpjPGRtI2YiRjE3JCQhM2FtaVpEbD8oXCJGMSQhM1khcEFCb0NKdCJGMTckJCEzSyE9O1hXTT04IkYxJCEzKTQxRiEpKSoqPl89RjE3JCQhM3JNdShRdScqZiN5RjQkITNrKVElPlIoXDIkPkYxNyQkITNhTU9zRC5xdVFGNCQhM2t5T2gpUltLKT5GMTckJCEzaVFPNSlHXUA8KkZkbyQhM0dAWlFfMSoqKio+RjE3JCQiMyUzcCcqM3dwSidRRjQkITNNXHAscCRbTCk+RjE3JCQiMyFvejZyLkNebShGNCQhM28ncCQqZSNmaEw+RjE3JCQiM0FsdG06JlIyOiJGMSQhM2lTVFZRYSxaPUYxNyQkIjNnJEdIRzwhKjRdIkYxJCEzJmY/NkBfcDt0IkYxNyQkIjN3dWslKT5eIUckPUYxJCEzITN6cCRlOU8kZSJGMTckJCIzQiJHU2Y2IXpIQEYxJCEzPzl4NjdXYTM5RjE3JCQiMzFlbDY9TjBxQkYxJCEzRGhlTTV4O0U3RjE3JCQiMyk+L2pbRCxCZyNGMSQhMztSJ2ZeJVIwXioqRjQ3JCQiM3VcWidmRyt2dyNGMSQhM0MiUjlNOlAqPnhGNDckJCIzcWZvd2dtUycqR0YxJCEzcD4sTnp3TzVfRjQ3JCQiM210Jyp5Z20zc0hGMSQhMzFbUkg3WSQ+cyNGNDckRiokIjNBXEU3R3UjM2siISNFLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJEYsRmBbbEZhW2wtJStBWEVTTEFCRUxTRzYkUSE2IkZlW2wtJShTQ0FMSU5HRzYjJSxDT05TVFJBSU5FREctJSVWSUVXRzYkOyQhMnduU1VHJikqPkohIzskIjInKnBiOXIqKio+SkZhXGw7JCEwbywkZS8qKno/ISM5JCIyVz0hUVwlKioqej9GYVxs
<Text-field layout="_pstyle6" style="_cstyle6">Aufgabe 2</Text-field>Die Kurve r(phi)=Phi (Archimedische Spirale, Polarform) wird gezeichnetpolarplot(phi,phi=0..4*Pi, scaling=constrained);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdqbzckJCIiIUYrRio3JCQiM01QYT0mUkpuTiIhIz0kIjNhKkgvYk9DKXA9ISM+NyQkIjMqZkgxMid6KnBqI0YvJCIzOnBXNCc0aiM0dUYyNyQkIjNNJltURihwKDRqJEYvJCIzK3hkTXE1ZzA6Ri83JCQiMyU9XCgpWzFLXFklRi8kIjNaRj5rPFVrNURGLzckJCIzOSI0Kls6O0xmXkYvJCIzb3oqRyY+VnMiKlFGLzckJCIzcSpmTmtSYmJhJkYvJCIzNyY0J0hSWyIqKVsmRi83JCQiMzVPYEp2O1J6YkYvJCIzZ0hDPjdBPmFzRi83JCQiM1JTZEVDIj1VQSZGLyQiMyMpKnkjNFQkeSkzIipGLzckJCIzPWFKSE4vKFJZJUYvJCIzX2ZQQVh5KHA0IiEjPDckJCIzZUpCeXZaWCFIJEYvJCIzIz0qXG5qOShvRiJGZW43JCQiMz4xZV0qKUdFUT1GLyQiM0RMeCJwdDE4ViJGZW43JCQiMy0jb3gmRyMqbzBeISM/JCIzJSkzTllwM2BuOkZlbjckJCEzMzciWydHLmpEQEYvJCIzU3pWTW1yMCRvIkZlbjckJCEzRy4mcHlBbWRmJUYvJCIzJzMjKjRvaDZsdyJGZW43JCQhM3VReSdIZip6MXVGLyQiMycqemshKmUqZkoiPUZlbjckJCEzPUtfKjQlPVdUNUZlbiQiMyxkbiopKVxUVSI9RmVuNyQkITM7MyJHeHVSTU4iRmVuJCIzP0JWaCdRT2R3IkZlbjckJCEzeTQyeHMnPiZwO0ZlbiQiM1NAR015IylvaztGZW43JCQhMzlYaEsqKWZ5Kik+RmVuJCIzX0toYVFUNi86RmVuNyQkITNBJT5yX0UrYUgjRmVuJCIzbzlVL3YiemRHIkZlbjckJCEzYyczLV4jXCN5dyNGZW4kIjNBYikqPT9AZGJ3Ri83JCQhMz0xVWRGWXlVSkZlbiQhM2UxKSpSNUM7YFBGY283JCQhMzlOJno0S18iKUckRmVuJCEzNS4uRiI0Nyk9IypGLzckJCEzZSF6KSp6d0pBOyRGZW4kITMlSHhAPz9Tbig9RmVuNyQkITNXdTNLbTljK0dGZW4kITNuKj52c1VTaXQjRmVuNyQkITMhKipmd20uME8xI0ZlbiQhM3ciUkxjSlZrbCRGZW43JCQhM3ksTDcxPmQrN0ZlbiQhMyM+RlhPZEhJRiVGZW43JCQiMztWK2FSTDRRQ0YyJCEzbzFaKXk3JVw8WkZlbjckJCIzODJHXSF5MSlRN0ZlbiQhMyYzZjlAIylSdiFbRmVuNyQkIjNsSnRjbmszO0VGZW4kITNDcTo2Yzw7TlhGZW43JCQiMzVuJyo9SG5ub1FGZW4kITNhJj1eVigpMzAhUkZlbjckJCIzQU87TUMzZytdRmVuJCEzI3piMyJlLGVrR0ZlbjckJCIzIz1DIlx3T3koeSZGZW4kITNQTixgbGw0PztGZW43JCQiM2VrOCpbJD4nb0YnRmVuJCEzUSY+PGk5YEwqUUYyNyQkIjNeOFEjM1koNDpqRmVuJCIzI1EqKSkqby5mTnYiRmVuNyQkIjNSInlEPUVPUCNmRmVuJCIzVEROcnhGSkhMRmVuNyQkIjNpOkZXOzYsYF1GZW4kIjM0aWpSVzlVQ1xGZW43JCQiMy01SzJXeHgocCRGZW4kIjNpMGJGOTohSEsnRmVuNyQkIjNNKCkzTGEyOSUqPkZlbiQiMyNcbl46RFQ4SyhGZW43JCQiMz10PkRvVWxsNUZlbiQiM2hJdEdxK1pUd0ZlbjckJCIzI2ZMdCc0MEIneSlGMiQiM3YlSHMqb2lHVXlGZW43JCQhM3VMITRUMHNtLiJGZW4kIjMmcCwjKXBzLW0iekZlbjckJCEzJ2VBKCpRPk0rPSNGZW4kIjMiZSNSQ0J1cEZ5RmVuNyQkITN4bURqcVN0LktGZW4kIjNGI0ciUj00VjB3RmVuNyQkITNvKkclM3lpWDBVRmVuJCIzNydlNiJlXy5bc0ZlbjckJCEzWCNlZVExaC9CJkZlbiQiM3RnSFUjPiVwPm5GZW43JCQhMzc4S3ovP0kpPSdGZW4kIjN3V28rRCg9YC8nRmVuNyQkITNLNCF6XC1CMilwRmVuJCIzYFRUSk0uSzpgRmVuNyQkITMtWSQ0Lic0LydvKEZlbiQiMyEpSEopW2EuNlslRmVuNyQkITNtNTxoLUpKVCQpRmVuJCIzWSIpW1woUjVCWSRGZW43JCQhMylmbFpgTVgqZikpRmVuJCIzRVFTM2NDIXlNI0ZlbjckJCEzVW5yJVsyZzFAKkZlbiQiM3EsQSE9PTskRzdGZW43JCQhM1wjZicpUTUoWz0lKkZlbiQiM1N0KVInNEtFZmRGMjckJCEzV1sudTEpW11aKkZlbiQhMyhRI3kiejhBND8iRmVuNyQkITNFQFdzJFEwPk8qRmVuJCEzY01FWHg/MHRDRmVuNyQkITNZWDhMcEV3JTMqRmVuJCEzSnMiPUFAOXlxJEZlbjckJCEzYDdmWE5bXVYnKUZlbiQhM2kncEglPVxkNlxGZW43JCQhM0skKj5LaThhNCEpRmVuJCEzOzk+eid6JHA5aEZlbjckJCEzPiRbK2w3R3E/KEZlbiQhM18zS24lNGZdQihGZW43JCQhMyl6a1ciUVsoXEcnRmVuJCEzVik+QDZ3LFBAKUZlbjckJCEzclFxbCJSYCVIX0ZlbiQhM1lIU3N5aGt0ISpGZW43JCQhMyIqM1EjWys2IkdTRmVuJCEzQG12KTNUJ0g2KSpGZW43JCQhM04yZSEqZUJlQUZGZW4kITNecEpyST4lKVE1ISM7NyQkITN5aXN4Uy1IWThGZW4kITNFSGAoPl90KHk1RmVfbDckJCIzXl9KOCRRO1YhKSlGMiQhM0EzYiVmTUEuNSJGZV9sNyQkIjM5PSRvbTg2Z1YiRmVuJCEzKnk3VlZlJT4uNkZlX2w3JCQiMy05eihvJlIrI3ojRmVuJCEzbVImW2RuUCUqMyJGZV9sNyQkIjNaJVxoJz4rTkhWRmVuJCEzbTRjNGcxL2A1RmVfbDckJCIzInk6WjlkIm89ZUZlbiQhMzchZnpvZyczWyoqRmVuNyQkIjN3SnE/YkBkJTMoRmVuJCEzWSo9T0d0VXVDKkZlbjckJCIzISkpPkYsIlxObCMpRmVuJCEzMzJOREdjKFtRKUZlbjckJCIzbnMrJnB6dnJTKkZlbiQhM0U+Mnc9TWwpSChGZW43JCQiM2RgbCtaW11TNUZlX2wkITNfRiEpZWNKR2NnRmVuNyQkIjN3KCkpSEomPmI/NkZlX2wkITN4Lk95M3htUVpGZW43JCQiM0lIYk0keSN6JD0iRmVfbCQhM3hdb0pRKEhdSiRGZW43JCQiM3grJ29VdD45QiJGZV9sJCEzOXVSdTs+bSJwIkZlbjckJCIzMysrK2lxamM3RmVfbCQiM0tITlVBS1opMyghI0QtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRitGY2RsRmRkbC0lKFNDQUxJTkdHNiMlLENPTlNUUkFJTkVERy0lJVZJRVdHNiQ7JCExYV5GJj54ZSIqKiEjOiQiMjFbYDMhKj4ySSJGX2VsOyQhMlkmUlsibyI0VDZGX2VsJCIxJUchUilwdGJIKUZfZWw=Die Kurve r(phi)=exp(Phi) (Logarithmische Spirale, Polarform) wird gezeichnetpolarplot(exp(phi),phi=0..4*Pi,scaling=constrained);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdbcDckJCIiIiIiISRGLEYsNyQkIjNdQz5PbDkybTchIzwkIjNbKEc4ODxDdGIkISM9NyQkIjNLOE0hKjNTIVtYIkYxJCIzZ2lsPkpdUyE9KUY0NyQkIjM3JypHP3VDJTNiIkYxJCIzcShcZnRsLV1gIkYxNyQkIjN6SnZuKlE4PVUiRjEkIjNXQW8nZkBiIXpDRjE3JCQiMzg0aF9ETEhHJCpGNCQiM1BcVXpkUigpPk9GMTckJCIzI29NKCpbMlY8YyIhIz4kIjNDJipIcUUhNFt6JUYxNyQkITM5WEU+WXZBaTpGMSQiMyI0NGgnRydmWysnRjE3JCQhMyplJilcYyNIcUtTRjEkIjNNNyF5Jno4O0RxRjE3JCQhM2lUOGhgXzcjWyhGMSQiM0MieS4kZkdaZ3VGMTckJCEzdyI+NC10NDtAIiEjOyQiM0NJUnZwJSkpb3knRjE3JCQhM2JOJz5tL11HcSJGW28kIjN3LSFld3NTKjRaRjE3JCQhM0MnPVwjZUYkb0ojRltvJCEza2ZARjN5em1GRkw3JCQhM1BGayNHdyhlR0hGW28kITMjKT4/SSZvPzJAKUYxNyQkITMlXGJfd2IwKipSJEZbbyQhMyk9PmRFRSd6PD9GW283JCQhMylleEZ3ZXEkKWUkRltvJCEzQ1JpXSR5YmZdJEZbbzckJCEzVXJYeG95KEhGJEZbbyQhMzMuImZIeSdIKnomRltvNyQkITNZIil6W2AoPScqRyNGW28kITNhQEguRk03XCIpRltvNyQkIjNbKiozZCFcYEd5JkY0JCEzPF0lKjMuMyQqPTYhIzo3JCQiM1tvM0VBLlp1TkZbbyQhM1tkdykpSFU8KFEiRmZxNyQkIjNPd2tPKW8zZ1EqRltvJCEzXWhhIkhxRnJpIkZmcTckJCIzKG9TO0h6IUg3PEZmcSQhM2t3eFc+KXpqcyJGZnE3JCQiM01KTnQnW2k9dyNGZnEkITNZQy4jKnpeNyNlIkZmcTckJCIzdG5cP1wlKipcI1JGZnEkITM1LyVvL1JzJyk0IkZmcTckJCIzPlxaJTNWLTxLJkZmcSQhM1YwLSpHdiYqM0kkRjE3JCQiMydIKCozX0cleWtuRmZxJCIzVUApZnclb1V5PUZmcTckJCIzIXorViplWmsqeShGZnEkIjNNTVFrWHkreVZGZnE3JCQiM143IzMraSNbLiQpRmZxJCIzdS12N01YPCM0KUZmcTckJCIzKUckXCo0Uz8xbShGZnEkIjNdUU12alUhKjQ4ISM5NyQkIjN3SnZoXUAjKik9JkZmcSQiM1VybHlSWTIwPkZpdDckJCIzbSZbPSVRIylwYEdGW28kIjMvI1xPJDNFNlpERml0NyQkITMvZHZKKnAsIW8hKkZmcSQiM08kUSNHN1cpZkQkRml0NyQkITMrSDlhdU0oKSpbIkZpdCQiMzwiRyZwPDQmb2AkRml0NyQkITMnNCVcaVtYLSg9I0ZpdCQiM2tcPDw6NklwUEZpdDckJCEzZ0koUWBWcmMxJEZpdCQiM1RyU1hMKlEmUVJGaXQ3JCQhM2EqKipmRVdjKikzJUZpdCQiM1cncD03VHpXKlJGaXQ3JCQhM3ZdVHVqciVHOSZGaXQkIjNAZHYmNGQ0ZiJSRml0NyQkITNPQGcpZScpNFpKJ0ZpdCQiM3EmSCk9VEFmIm8kRml0NyQkITNvXSspZU1SQXMoRml0JCIzYyRwI1wqUlhgPyRGaXQ3JCQhMyNbSnphREhaQypGaXQkIjNTI0coKVxlbShcQ0ZpdDckJCEzJ1wiejZqd2VKNyEjOCQiMy1pZnRHTCg0YChGW283JCQhMzszUnQlUjc2YiJGZHgkITNRT0p3eHBWKDQlRml0NyQkITMhKTRacWYzRjE9RmR4JCEzW2pYSTJLUkU1RmR4NyQkITMlRzl2Q2dlMCo9RmR4JCEzL2kiemspPklWOUZkeDckJCEzbygqUmkoZSN6QD5GZHgkITM+MGI8Jj5uI0g+RmR4NyQkITNXMydHO0tEXik9RmR4JCEzOXFOM00yampDRmR4NyQkITNBdlg7J0gzWXciRmR4JCEzMzYjPUg5ejwxJEZkeDckJCEzSmZeWDRdWkw6RmR4JCEzZlZkcVdeNE5QRmR4NyQkITNFc01dYzdfcDZGZHgkITMpcDo3SCpHW2lXRmR4NyQkITNSd0B4W2gtP2xGaXQkITMmNDlARjVhV0EmRmR4NyQkIjMmPVgkZk1WKXkhW0ZmcSQhM2JgKzc7JHAnM2dGZHg3JCQiM2VpKyhvayVwZCgpRml0JCEzcyZlQGQscnpzJ0ZkeDckJCIzXDJaSlB1JD0hPkZkeCQhM3o/aycpSFUmNFUoRmR4NyQkIjMnW1R3THklKnpNJEZkeCQhM1h3cTRAclVWIilGZHg3JCQiM2Q4R1s/KFIjNF5GZHgkITN2SUpVJm9uXnQpRmR4NyQkIjNieUtaLVgzMGdGZHgkITNpO1RHPilHKlIqKUZkeDckJCIzOzxAWzcuPHFwRmR4JCEzW1Vvay5bNik0KkZkeDckJCIzdGMvakUhPWQrKUZkeCQhM3lePCNmKG9DLSMqRmR4NyQkIjNIZDliSiRIRDYqRmR4JCEzXmEmRydwMElXIypGZHg3JCQiMzJXUHcmKW85UDUhIzckITMwXiEpXGNLNDYjKkZkeDckJCIzIXBQeHlzWjY8IkZkXmwkITNFLjdjZCNwazMqRmR4NyQkIjNnKm9ueiJbOTg4RmRebCQhM1M8RmczZmllKSlGZHg3JCQiMz1sWSo+YU9IWSJGZF5sJCEzLCVSYEgnbzA6JilGZHg3JCQiM1wzMilwbkZMaCJGZF5sJCEzQ09HMHpabGwhKUZkeDckJCIzeVI6UG0mPS14IkZkXmwkITNdW2h1eUctJ1soRmR4NyQkIjNNbip6L1BmNCY9RmRebCQhM0s+bihHIlxWVnJGZHg3JCQiM0t1dSoqSDE5TD5GZF5sJCEzWVVpdE5UXWpuRmR4NyQkIjMyaVtmcmNvOz9GZF5sJCEzUERKKSkqeXNYTSdGZHg3JCQiM3kyIilvYCo0OjUjRmRebCQhMztnMSEpPWMmXCllRmR4NyQkIjNrKD1hWjUmKVI+I0ZkXmwkITNAPCU0IUhac1ZgRmR4NyQkIjNhPFQnZT8veEcjRmRebCQhMyMqPVgrVXZQXlpGZHg3JCQiM0toJWZRQEhEUSNGZF5sJCEzaklGeUQ0dDBURmR4NyQkIjNbWWJ3bic0JHlDRmRebCQhM2RvJUd5K3dYUyRGZHg3JCQiMzdXQkR1QClbZCNGZF5sJCEzWW9TVyJvIm9YRUZkeDckJCIzb2c3I3opKXA/biNGZF5sJCEza1wneUxUKXpFPUZkeDckJCIzeSZcIjN3YCQzcyNGZF5sJCEzP2A0NTtSOiVSIkZkeDckJCIzMUNeSSgpPm9wRkZkXmwkITM9WSU9J1tPaWMlKkZpdDckJCIzZT4vailmJGU9R0ZkXmwkITNeIzMicFNGUjVbRml0NyQkIjMnNG9Udjk4didHRmRebCQiMzgkPT5peDl2aCIhIz8tJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRixGXWVsRl5lbC0lKFNDQUxJTkdHNiMlLENPTlNUUkFJTkVERy0lJVZJRVdHNiQ7JCEyTyJbKSlvNXRMREZkXmwkIjJDd25jKnBxR0ghIzY7JCExa04lKVJiPFAlKkZbZmwkIjEjeW9MNkhLI2ZGZF5sDie Logarithmische Spirale ist schwer zu zeichnen, da r sehr schnell sehr gro\337 wird (Exponentialfunktion)
Steigung von Kurven
<Text-field layout="_pstyle9" style="_cstyle9">Aufgabe 1, Teil a) und b)</Text-field>Die Epizykloide wird in Parameterdarstellung eingegebenxt:=5*cos(t)-cos(5*t); yt:=5*sin(t)-sin(5*t);NiM+SSN4dEc2IiwmLUkkY29zRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kidEdGJSIiJi1GKDYjLCRGLUYuISIiNiM+SSN5dEc2IiwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kidEdGJSIiJi1GKDYjLCRGLUYuISIiDie Kurve wird gezeichnetwith(plots):plot([5*cos(t)-cos(5*t),5*sin(t)-sin(5*t),t=0..2*Pi],scaling=constrained);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDddcTckJCIiJSIiISRGLEYsNyQkIjMnKj1Bb2FpS1lTISM8JCIzRXd4I2UjKSkzJFEnISM/NyQkIjNFKzBLdjppeVRGMSQiM0wpNEl3ZTxRLCYhIz43JCQiMyVmQkohZV0mKltWRjEkIjMhNDdwQTJDUVciISM9NyQkIjNtWydIPC1nMmIlRjEkIjMhZXlfa2xwWDMkRkA3JCQiMzMvIypIR20wJ3klRjEkIjMzcCVSXiNlbicpZUZANyQkIjN3P08teSgqMyYqXEYxJCIzO0tqJCpvLlRHKCpGQDckJCIzayd5diopUklHOSZGMSQiMzdnIlwkM04/YjlGMTckJCIzWyQpKWYhXGM3Jz4mRjEkIjMjUidmK0hqVjc/RjE3JCQiMyJHbW1hdnpCOCZGMSQiM2NMWEprYyo0aCNGMTckJCIzKXkocDdqbzpTXEYxJCIzO2NJTWsjXHFAJEYxNyQkIjNtTEdCNyQ9dGslRjEkIjNLNF9NUTYwX1BGMTckJCIzXWpMdEcjR1REJUYxJCIzUCU+Y0opbzRKVUYxNyQkIjMxLGdtc2FvZ1BGMSQiM2RKd0cjb3A5ayVGMTckJCIzdj47eToieW4/JEYxJCIzIm9xQGtRa1glXEYxNyQkIjM7Llt1I28oKltnI0YxJCIzNzQmXEVsWE84JkYxNyQkIjNXIlErUjgkeTU/RjEkIjMvLXhuI0hLaD4mRjE3JCQiMzMpeSkqRz9FO1kiRjEkIjNaYyVmXyw2VDkmRjE3JCQiM0VsOFclXCsiWykqRkAkIjNLbyFHbSVvNitdRjE3JCQiM1JyNFBOeTo3ZkZAJCIzJylbMCVSUC15eSVGMTckJCIzbScpWyxKRCNvMCRGQCQiM3F5U2doPyl5YSVGMTckJCIzITMqZSN6RXlPVCJGQCQiM29aRVpZIUdXTSVGMTckJCIzeVkhPSVHNEkoeiVGOiQiMycqeSdIazs1TzwlRjE3JCQiMypwX0lLYnRQLSdGNCQiM15eJWYqSFplV1NGMTckJCEza3hGeHQpNHlEJSEjRSQiM1prWE9sTisrU0YxNyQkITNAPGVYZ3YuRmtGNCQiM1VYWUc+cGBZU0YxNyQkITMvMEokUkcoUSQpXEY6JCIzJyk0XC0kR0F6PCVGMTckJCEzJUh0LjlQSCZvOkZAJCIzIylwZGVJTkRuVkYxNyQkITNrUCMpUjNlRSlcJEZAJCIzI1I/WE8vej9mJUYxNyQkITNtVS04bWpYKTQnRkAkIjNYLDMkKillI1IrW0YxNyQkITNuQSMqZXBaXz4mKkZAJCIzIWVcJipbYEdoKVxGMTckJCEzS09gTyoqWy9jOUYxJCIzSXRLPzAiKipIOSZGMTckJCEzbGFYai5HXFU/RjEkIjNZaXQhZUNTZT4mRjE3JCQhMyUpekxUODFeeERGMSQiM1w3bHhNSDxSXkYxNyQkITNUOU1OM1pAP0pGMSQiM11vcVM1XjAhKVxGMTckJCEzQyg9Pio9QnFDUEYxJCIzTzEyQiZIJGVsWUYxNyQkITNpOm49aTwlM0UlRjEkIjNXTzMkUSd6SENVRjE3JCQhM1UlRyVSQV0lKlxZRjEkIjNXVm0zYVQ6W1BGMTckJCEzUkcnSG4jcDdTXEYxJCIzPiNRIipHcD1yQCRGMTckJCEzWD1JY0BcYUxeRjEkIjNoVDtAIT4mUTBFRjE3JCQhM3FeRV1jPjonPiZGMSQiMzs1JCpceTFrLD9GMTckJCEzJ1s7VnZMR2E5JkYxJCIzdzBUMXo2S285RjE3JCQhMz0sJjMhW1lmMl1GMSQiMy0jKj5WZ14nSCsiRjE3JCQhM2xvLkowb2wrW0YxJCIzJTMhKik+QVVULWhGQDckJCEzYz5Bai8xJFtjJUYxJCIzYzUwIyk+Oz9BS0ZANyQkITMnKXBFKFxHT1hOJUYxJCIzRSRvV2skW1AiWyJGQDckJCEzKzJkR1slM3U8JUYxJCIzX3JLb0FBMmhcRjo3JCQhMyUpKj4ieVBzM1tTRjEkIjNZaE0nUmBUT3YnRjQ3JCQhM3Z5Mjd6aDQrU0YxJCIzN1lnVix2cWxmISNDNyQkITN3TSg9KVs9R1ZTRjEkITMnb0YieU10bmZkRjQ3JCQhMyVHVDM6RlpbPCVGMSQhMzNkKEcnNENUXVtGOjckJCEzY3R6dT4hZmpNJUYxJCEzI1JmSVVrLWxVIkZANyQkITNjZzJHbE5SXVhGMSQhM2FbJkdbKipHNTMkRkA3JCQhM3c3eT5vRUV6WkYxJCEzTyRSVkdoKyQpeSZGQDckJCEzR24kXD9AYlYpXEYxJCEzO055WTZTJSl5JSpGQDckJCEzJkdLTEJBUmo4JkYxJCEzIz14UkZhWFFVIkYxNyQkITMvNzssJEheZz4mRjEkITNLeSlvcHhcZSg+RjE3JCQhMyRlZTMqeVRVVV5GMSQhMzciZic9TDh4Z0RGMTckJCEzR3I+IVxocmQnXEYxJCEzIVFGR0gkNCNmOiRGMTckJCEzRSZHKClmZyUpcG4lRjEkITNJImYuaXhFdHEkRjE3JCQhM0UhUXAmcFciPkclRjEkITM7JypRdzo4cS1VRjE3JCQhMzUoKmY8MXEnPXUkRjEkITNLLTtAUmU7YVlGMTckJCEzem1GQEs+V0lKRjEkITNjJkh2IWZYLHdcRjE3JCQhM2lmWlJaXGxiREYxJCEzYTQ9dT0oKVJWXkYxNyQkITM9U3AjXDUocCEqPkYxJCEzJXluQW1VUGg+JkYxNyQkITM+O3g5Q295SzlGMSQhMyhHaGsqXDFCUV5GMTckJCEzRUlSJEckKWVzXipGQCQhMzFsJXBEK0lnKVxGMTckJCEzKWVDTEtGZiYqKmZGQCQhM293LEtwbXUkeiVGMTckJCEzTyk+YyEpcHRyTiRGQCQhM1FEQCZ6ODUkeVhGMTckJCEzJzNPIzRKM3BaOUZAJCEzIzM3eERySyZcVkYxNyQkITNpKVxmVSFlYF5VRjokITM/TkthIVsjZWdURjE3JCQhM1lKQlVeU0ojeiZGNCQhM3UnR1VGJlJXVlNGMTckJCEzWlAmZSRHRno6ZEZdW2wkITNDXyRvUlokNCtTRjE3JCQiM3VcWDlNLylRKVxGNCQhMzFpL1gieUgkUlNGMTckJCIzdiJSL0BVSlNAJUY6JCEzIzRYV14hW21mVEYxNyQkIjN3Jls1I1skPl9RIkZAJCEzTzlAcnJgNlNWRjE3JCQiMydINjFQMGU8OyRGQCQhM01NPip5biNwZVhGMTckJCIzRyRvKlxlbUlKZ0ZAJCEzKyd6dT9LKilleiVGMTckJCIzRUBkPzJVKCllKipGQCQhM2JeTFhRL3EvXUYxNyQkIjNFVGJmZWYnW1kiRjEkITNmIjM0cHJdWjkmRjE3JCQiM2B6I2VabSxMKyNGMSQhM0k2ZyhbYF1oPiZGMTckJCIzQ3FtWVdpInBmI0YxJCEzJVJFS3Y6JEdOXkYxNyQkIjMlWypIJFFxJXkpPiRGMSQhMyF6cXZGUmx6JVxGMTckJCIzNy9JOkcsdG1QRjEkITMhbz1TOF9edGolRjE3JCQiMyUzWj9TPWYyRiVGMSQhMyVRKDREcEU9OVVGMTckJCIzWTRYNVFrL19ZRjEkITNEISoqNGQneS1YUEYxNyQkIjNETW9yKSk9Z1BcRjEkITNZcWM1VShlSEEkRjE3JCQiM2UpW0J1cktkOCZGMSQhM3crbyFwNDFaZiNGMTckJCIzKTQnPk0hM1xnPiZGMSQhMzFDYz9kcmV2PkYxNyQkIjMvYFpQKFErVjkmRjEkITN3Jil5QmdJZWk5RjE3JCQiMyZSZlFwKTNxNl1GMSQhMzZUKiopW2Y/SiwiRjE3JCQiM2dPK0wqb3YhNFtGMSQhM29ZIkhoXyhlSGlGQDckJCIzJUheIz0rUy54WEYxJCEzJ2VSdz4hSEVXTEZANyQkIjNZUilmUU1lLE8lRjEkITNERW9FZzNqPjpGQDckJCIzK1VtKSlHUWF4VEYxJCEzVWlJQS96JXAnXEY6NyQkIjNFakxzKillLllTRjEkITNxJTMmb1tNb0FqRjQ3JEYqJCEzd3ctYERoIT1GKSEjVS0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGLEZjamxGZGpsLSUrQVhFU0xBQkVMU0c2JFEhNiJGaGpsLSUoU0NBTElOR0c2IyUsQ09OU1RSQUlORURHLSUlVklFV0c2JDskITEtUmgzdipSUyYhIzokIjFNNjwsNyhSUyZGZFttOyQhMSczRjk+JypSUyZGZFttJCIxdyhHI1x6KFJTJkZkW20=Die Ableitungen werden berechnetxpunkt:=diff(xt,t); ypunkt:=diff(yt,t);NiM+SSd4cHVua3RHNiIsJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJInRHRiUhIiYtRig2IywkRi0iIiZGMg==NiM+SSd5cHVua3RHNiIsJi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJInRHRiUiIiYtRig2IywkRi1GLiEiJg==Die Steigung f\374r t=pi/4 wird berechnetsteigungpiviertel:=subs(t=Pi/4,ypunkt)/subs(t=Pi/4,xpunkt);NiM+STJzdGVpZ3VuZ3BpdmllcnRlbEc2IiomLCYtSSRjb3NHNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjLCRJI1BpR0YrIyIiIiIiJSIiJi1GKTYjLCRGLyNGM0YyISImRjEsJi1JJHNpbkdGKkYtRjgtRjtGNUYzISIievalf(steigungpiviertel);NiMkISIiIiIhKoordinaten (x0,y0) des Punktes auf der Epizykloiden f\374r t=pi/4 berechnenx0:=subs(t=Pi/4,xt); y0:= subs(t=Pi/4,yt);NiM+SSN4MEc2IiwmLUkkY29zRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2IywkSSNQaUdGKiMiIiIiIiUiIiYtRig2IywkRi4jRjJGMSEiIg==NiM+SSN5MEc2IiwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2IywkSSNQaUdGKiMiIiIiIiUiIiYtRig2IywkRi4jRjJGMSEiIg==evalf(x0); evalf(y0);NiMkIisnb1NFQyUhIio=NiMkIisnb1NFQyUhIio=Tangentengleichung fr t=pi/4 bestimmeny=steigungpiviertel*(x-x0)+y0;NiMvSSJ5RzYiLCZJInhHRiUhIiIqJCIiIyMiIiJGKiIiJw==
<Text-field layout="_pstyle10" style="_cstyle10">Aufgabe 1, Teil c)</Text-field>Die Epizykloide wird in Parameterdarstellung eingegebenxt:=5*cos(t)-cos(5*t); yt:=5*sin(t)-sin(5*t);NiM+SSN4dEc2IiwmLUkkY29zRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kidEdGJSIiJi1GKDYjLCRGLUYuISIiNiM+SSN5dEc2IiwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kidEdGJSIiJi1GKDYjLCRGLUYuISIiDie Ableitungen werden berechnetxpunkt:=diff(xt,t); ypunkt:=diff(yt,t);NiM+SSd4cHVua3RHNiIsJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJInRHRiUhIiYtRig2IywkRi0iIiZGMg==NiM+SSd5cHVua3RHNiIsJi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJInRHRiUiIiYtRig2IywkRi1GLiEiJg==Horizontale Tangenten sind gesucht, also ypunkt=0solve(ypunkt=0,t);NicsJEkjUGlHSSpwcm90ZWN0ZWRHRiUjIiIiIiIjRiQiIiEsJEYkI0YnIiIkLCRGJCNGKEYst=0 wird untersuchtxpunkt0:=subs(t=0,xpunkt);NiM+SSh4cHVua3QwRzYiIiIhlimit(ypunkt/xpunkt,t=0);NiMiIiE=t=pi/3 wird untersuchtxpunktpidrittel:=subs(t=Pi/3,xpunkt); evalf(%);NiM+STB4cHVua3RwaWRyaXR0ZWxHNiIsJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiMsJEkjUGlHRiojIiIiIiIkISImLUYoNiMsJEYuIyIiJkYxRjc=NiMkIStTU0RnJykhIio=t=pi/2 wird untersuchtxpunktpihalbe:=subs(t=Pi/2,xpunkt); evalf(%);NiM+SS54cHVua3RwaWhhbGJlRzYiLCYtSSRzaW5HNiRJKnByb3RlY3RlZEdGKkkoX3N5c2xpYkdGJTYjLCRJI1BpR0YqIyIiIiIiIyEiJi1GKDYjLCRGLiMiIiZGMUY3NiMkIiIhRiQ=limit(ypunkt/xpunkt,t=Pi/2);NiNJKnVuZGVmaW5lZEdJKnByb3RlY3RlZEdGJA==limit(ypunkt/xpunkt,t=Pi/2,right);NiMsJEkpaW5maW5pdHlHSSpwcm90ZWN0ZWRHRiUhIiI=limit(ypunkt/xpunkt,t=Pi/2,left);NiNJKWluZmluaXR5R0kqcHJvdGVjdGVkR0YkBei t=pi/2 liegt eine einspringende Ecke (Vorzeichenwechsel bei Grenzwert) vor. Hier liegt eine vertikale Tangente vor.
<Text-field layout="_pstyle11" style="_cstyle11">Aufgabe 2, Teil a)</Text-field>Die Kardioide wird definiert (a=1)xt:=(1+cos(t))*cos(t); yt:=(1+cos(t))*sin(t);NiM+SSN4dEc2IiomLCYiIiJGKC1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJInRHRiVGKEYoRilGKA==NiM+SSN5dEc2IiomLCYiIiJGKC1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJInRHRiVGKEYoLUkkc2luR0YrRi5GKA==Die Kurve wird gezeichnetwith(plots):plot([xt,yt,t=0..2*Pi],scaling=constrained);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdgbzckJCIiIyIiISRGLEYsNyQkIjNVL0RoSlcoSCo+ISM8JCIzSVJlVkw9KW9PIiEjPTckJCIzZ0glUUFSJyo+KD5GMSQiM18oZURWQXN4ciNGNDckJCIzISpmekJ5aWhVPkYxJCIzYVU+XnZUIXonUUY0NyQkIjM7Y1VOIW8vSyE+RjEkIjNjMC8tbEQlUilcRjQ3JCQiMykpeiZRc1k/dSU9RjEkIjNFd1VAeiM+aj0nRjQ3JCQiMylbImVYbUBBIXkiRjEkIjM1VVltKHpcL0soRjQ3JCQiM0ZOISpbJEdfPnEiRjEkIjMxSyFHUCo0OCJRKUY0NyQkIjNabHA4Yk0xOTtGMSQiMyEqeilbZUsvKFwkKkY0NyQkIjN3TCc0VEAmPj06RjEkIjM0K2YhXEwhR0A1RjE3JCQiMyEpKmZ6Xz8oPjo5RjEkIjNbKGVdb0hTbjQiRjE3JCQiMydmOEEjZiEpWzk4RjEkIjNlKGVXKj4+WWM2RjE3JCQiM3gzblMmKWYpKTQ3RjEkIjNkLm4leWheZj8iRjE3JCQiM3dTIyllXFNuKTQiRjEkIjNFM3pgZiZmaEMiRjE3JCQiMz8udylmJClldiYpKkY0JCIzazxpY0xVLXY3RjE3JCQiMzFsYy9YSzsmbylGNCQiM1NibWZMInpISCJGMTckJCIzJWVRZF9yYTpfKEY0JCIzPXdQNiU0TyEqSCJGMTckJCIzWS4qPTJEc01RJ0Y0JCIzIypwaV8oZSNmJEgiRjE3JCQiMy0oUlxeTCdbel9GNCQiM09MQSkqZXM+eDdGMTckJCIzPUpIUCpSVjo+JUY0JCIzQXZdVFZIZlw3RjE3JCQiM09SVWpnUTlqSkY0JCIzYDw7VWYpUj5AIkYxNyQkIjNNTTF4SGgyRTpGNCQiMyVSQUlHI0g/QzZGMTckJCEzOUF4aDFXXW5mISNAJCIzPVNsZ1tyLSUqKipGNDckJCEzP3FxSlRsJW88IkY0JCIzW2dcJGZXcXBiKUY0NyQkITNxdC0yYFQmZiU+RjQkIjNveCZ5JHoieTs0KEY0NyQkITNrK21cSVFaXEJGNCQiM19pPkQ3MmttZEY0NyQkITNHRD13VDQjKSpcI0Y0JCIzRTwzJykpUis4RyVGNDckJCEzJyoqXGFHO1k+UiNGNCQiMylbKlFIJSp6aGNKRjQ3JCQhMyMzUDkuc3ZNMSNGNCQiMzFyNGhNKVFHMCNGNDckJCEzZXBdQyR6ZmxsIkY0JCIzdUkzai0xIlFHIkY0NyQkITNXMHpSPXUlNDsiRjQkIjM5Mi0hcGVsY3EnISM+NyQkITM9QCNlRUR5Iio0KEZhdSQiMy8hNDdLMkh3JkhGYXU3JCQhM18oPU5EdzoxRCRGYXUkIjNxdih5dit5NWwpISM/NyQkITNySWlTJilRYzUjKkZcdiQiMz12TS9qb3lrN0ZcdjckJCEzWjlVI29hWyE0WyEjQiQiM0smb0tqJD5XIlwiISNENyQkITNTWTZhakBPcyEqRlx2JCEzJW82KFF4dT9PN0ZcdjckJCEzXU15I3krN0o6JEZhdSQhM3NxdS1jW2VgIylGXHY3JCQhMyUzbkJISSZmQ29GYXUkITNZQG46SmZYdkZGYXU3JCQhMyE9bnBtaU4rOiJGNCQhM2kuIlI1Y3NwZidGYXU3JCQhM211RHFvJW8/aiJGNCQhM2dEI2ZzVSMqcEMiRjQ3JCQhM2siKSo9RDleWDAjRjQkITMmKUhbaihlaDsuI0Y0NyQkITNzcnMmKVxtLyFSI0Y0JCEzR2UkSFZZU205JEY0NyQkITNXUlhXSDgqKipcI0Y0JCEzWWpVKT14ISkzTSVGNDckJCEzbzYjUjNaJFJcQkY0JCEzbShcKlxLcS1uZEY0NyQkITMoZVohenA+Okc+RjQkITNWRyE0MV0zYTgoRjQ3JCQhM0k4MHYsQnZDNkY0JCEzXzQmPVA3JFxOJylGNDckJCEzNTFQJGYkZS5bSUZcdiQhMyl5OUUwZHokcCoqRjQ3JCQiM0NbblVyamFgOUY0JCEzIyozLkR2VlA+NkYxNyQkIjNMKWVITihcJ3k/JEY0JCEzalpgIltSSlFAIkYxNyQkIjNYSkYtNkw4MmBGNCQhM2l5JGY1bVl4RiJGMTckJCIzUWcqellBLzBSJ0Y0JCEzJ3ApcD5bOG0kSCJGMTckJCIzJkhbdjpDLW1dKEY0JCEzdSczTnAiei4qSCJGMTckJCIzJSpcRm1BWnFwJylGNCQhMyEqZilRZDJPSkgiRjE3JCQiMyU9KDQnKUhtd1QpKkY0JCEzUyU9JzRGaU12N0YxNyQkIjMlSCdbUUkjZSoqNCJGMSQhM1NBdnQib2pkQyJGMTckJCIzNV4oPiUpcElSQCJGMSQhM29nU18raUQvN0YxNyQkIjMjKnAmZkdMKSplSiJGMSQhMyc+K1heRDZkOiJGMTckJCIzLyRbKSplLVlUVCJGMSQhM00+MXpQNVYoNCJGMTckJCIzKEdrUzMiKmYzXyJGMSQhMz0mKiozMkUzIj41RjE3JCQiMy9AQjJsXSgpPjtGMSQhM115aXArcVkiSCpGNDckJCIzdygqUiozTyF5KzxGMSQhM1UuTFA2XFQmUilGNDckJCIzcTgqKj1AbF10PEYxJCEzYCt6bGMqKnk/dUY0NyQkIjNOdGZQPCs2VD1GMSQhM155XXEqeSlvL2pGNDckJCIzdVhzYGUhKmYoKj1GMSQhM15vU2YieTIvNyZGNDckJCIzKVtVJ3AncHQwJT5GMSQhM2orOWgicFNYJFJGNDckJCIzT1tEXkxLPHM+RjEkITMqbzFQXGNyIzRGRjQ3JCQiM09AQWRgKj1JKj5GMSQhM0ssZU1CZGJpOEY0NyRGKiQiM0FcRTdHdSMzayIhI0UtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRixGY2FsRmRhbC0lK0FYRVNMQUJFTFNHNiRRITYiRmhhbC0lKFNDQUxJTkdHNiMlLENPTlNUUkFJTkVERy0lJVZJRVdHNiQ7JCExSk0uYzYqKlxIISM7JCIxKikpZUUpKioqXC8jISM6OyQhMlExY3JSKio0TiJGZGJsJCIyTXZNVmQoKjROIkZkYmw=Die Ableitungen werden berechnetxpunkt:=diff(xt,t); ypunkt:=diff(yt,t);NiM+SSd4cHVua3RHNiIsJiomLUkkc2luRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHRiU2I0kidEdGJSIiIi1JJGNvc0dGKkYtRi8hIiIqJiwmRi9GL0YwRi9GL0YoRi9GMg==NiM+SSd5cHVua3RHNiIsJiokLUkkc2luRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHRiU2I0kidEdGJSIiIyEiIiomLCYiIiJGMy1JJGNvc0dGKkYtRjNGM0Y0RjNGMw==Die Steigung f\374r t=pi/4 wird berechnetsteigungpiviertel:=subs(t=Pi/4,ypunkt)/subs(t=Pi/4,xpunkt);evalf(%);NiM+STJzdGVpZ3VuZ3BpdmllcnRlbEc2IiomLCYqJC1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiMsJEkjUGlHRiwjIiIiIiIlIiIjISIiKiYsJkYyRjItSSRjb3NHRitGLkYyRjJGOEYyRjJGMiwmKiZGKUYyRjhGMkY1KiZGN0YyRilGMkY1RjU=NiMkISs/YzhVVCEjNQ==
<Text-field layout="_pstyle12" style="_cstyle12">Aufgabe 2, Teil b) und c)</Text-field>Die Kardioide wird definiert (a=1)xt:=(1+cos(t))*cos(t); yt:=(1+cos(t))*sin(t);NiM+SSN4dEc2IiomLCYiIiJGKC1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJInRHRiVGKEYoRilGKA==NiM+SSN5dEc2IiomLCYiIiJGKC1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJInRHRiVGKEYoLUkkc2luR0YrRi5GKA==Die Ableitungen werden gebildetxpunkt:=diff(xt,t); ypunkt:=diff(yt,t);NiM+SSd4cHVua3RHNiIsJiomLUkkc2luRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHRiU2I0kidEdGJSIiIi1JJGNvc0dGKkYtRi8hIiIqJiwmRi9GL0YwRi9GL0YoRi9GMg==NiM+SSd5cHVua3RHNiIsJiokLUkkc2luRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHRiU2I0kidEdGJSIiIyEiIiomLCYiIiJGMy1JJGNvc0dGKkYtRjNGM0Y0RjNGMw==Horizontale Tangenten sind gesucht, also ypunkt=0solve(ypunkt=0,t);NiVJI1BpR0kqcHJvdGVjdGVkR0YkLCRGIyMiIiIiIiQsJEYjIyEiIkYoVertikale Tangenten sind gesucht, also xpunkt=0solve(xpunkt=0,t);NiUiIiEsJEkjUGlHSSpwcm90ZWN0ZWRHRiYjIiIjIiIkLCRGJSMhIiNGKQ==t=0 wird untersuchtlimit(ypunkt/xpunkt,t=0);NiNJKnVuZGVmaW5lZEdJKnByb3RlY3RlZEdGJA==limit(ypunkt/xpunkt,t=0,right);NiMsJEkpaW5maW5pdHlHSSpwcm90ZWN0ZWRHRiUhIiI=limit(ypunkt/xpunkt,t=0,left);NiNJKWluZmluaXR5R0kqcHJvdGVjdGVkR0Ykalso: senkrechte Tangente f\374r t=0, hier einspringende Ecket=pi/3 wird untersuchtlimit(ypunkt/xpunkt,t=Pi/3); NiMiIiE=also: waagerechte Tangente f\374r t=pi/3
Implizite Funktionen
<Text-field layout="_pstyle19" style="_cstyle18">Aufgabe 1 a) und b)</Text-field>Die implizite Gleichung wird eingegebengleichung:=exp(y)+y+x^2-x-3;NiM+SSpnbGVpY2h1bmdHNiIsLC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJInlHRiUiIiJGLUYuKiRJInhHRiUiIiNGLkYwISIiISIkRi4=Zeichungwith(plots): implicitplot(gleichung, x=-4..4,y=-3..3, scaling=constrained);LSUlUExPVEc2JS0lJ0NVUlZFU0c2YHA3JDckJCEzOzl4WnRrdSYpPiEjPCQhIiQiIiE3JCQhM0FlIjQ4IlIqUiY+RiwkITMhPjg9bGMvWCZHRiw3JDckJCEzWSI9WiRwJXBMJD5GLCQhMyEpKioqKioqKioqKioqZkZGLEYwNyRGNjckJCEzVWczO1o9bzM+RiwkITNPYiRIWWgpW1tFRiw3JDckJCEzJSp5LFc9Y0IhKT1GLCQhM2QqKioqKioqKioqKio+REYsRjw3JEZCNyQkITNLdicpKXoqKltHJz1GLCQhM2YkXDM6RGpHVyNGLDckNyQkITNqbDtyRSdSaCM9RiwkITNPKioqKioqKioqKioqekFGLEZINyRGTjckJCEzdVAkUjY7IlI7PUYsJCEzTSdcWCJIbXFQQUYsNyQ3JCQhMyNwSiJHOTAjM3giRiwkITM6KioqKioqKioqKioqUj9GLEZUNyRGWjckJCEza1pFKD5mKD1wPEYsJCEzSzkwLTEkNEouI0YsNyQ3JCQhMyE0KysrKysrdyJGLCQhM3cuUyJ6K1JWKj5GLEZqbjckNyQkITM3LCsrKysrZzxGLEZjbzckJCEzaiVmWmF1XWZyIkYsJCEzIlJJOTQlcC5MPUYsNyQ3JCQhM0g8eDhPKUdwcSJGLCQhM1EqKioqKioqKioqKioqeiJGLEZpbzckNyRGYHAkITM7KioqKioqKioqKioqKnoiRiw3JCQhMz82XD4kZl0tbSJGLCQhM0w7UTViPyJbaiJGLDckNyQkITM1OHpCZi82UjtGLCQhMzsqKioqKioqKioqKipmOkYsRmhwNyRGXnE3JCQhM04zKiplITR1SWciRiwkITNrb3YwS1dwUDlGLDckNyQkITNRKHp1bU4nUm86RiwkITM8KioqKioqKioqKioqPjhGLEZkcTckRmpxNyQkITNbLEhvJ3l3VGEiRiwkITNgQnkpKjR1Jz1DIkYsNyQ3JCQhMytMRUtsNSslXCJGLCQhMz0qKioqKioqKioqKip6NUYsRmByNyQ3JCQhM0FMRUtsNSslXCJGLEZpcjckJCEzXSYpXCVlKTRJJFsiRiwkITNbZ2loZ1VfWjVGLDckNyQkITMkMysrKysrK1ciRiwkITNnKlJdPkg8NTsqISM9Rl9zNyQ3JEZmcyQhM3MrLyY+SDw1OypGanM3JCQhM2EjKnpNXGQ0PDlGLCQhM2VgKyopej15ciYpRmpzNyQ3JCQhMzAtX0gjUj0vVCJGLCQhMyM+KioqKioqKioqKioqUilGanNGX3Q3JEZldDckJCEzKXl5Y1tLMzZNIkYsJCEzMCkzdU5jKG9UbkZqczckNyQkITNrQlspNDQ0LEoiRiwkITMrIyoqKioqKioqKioqKipmRmpzRlt1NyRGYXU3JCQhM1kqNCNwI3lIPEUiRiwkITNMXiM0KUhtLVBcRmpzNyQ3JCQhMy8scFxPdSgzPyJGLCQhMzMjKioqKioqKioqKioqZiRGanNGZ3U3JEZddjckJCEzUUtqTyZIVih5NkYsJCEzMTBEdiVHRCVmSkZqczckNyQkITN4KysrKysrPzZGLCQhM2tfR0RFVTohKj5GanNGY3Y3JEZpdjckJCEzMTZ1ZSMqcCRvMyJGLCQhMzs5V2ZiRHNbOUZqczckNyQkITNfY2A7IWYtOzIiRiwkITM9IyoqKioqKioqKioqKj4iRmpzRl93NyRGZXc3JCQhMzUqPUNtcm1OeipGanMkIjM5TzlvdS52XjkhIz43JDckJCEzJSpmV3JoaUBxISpGanMkIjNzMisrKysrKzdGanNGW3g3JDckJCEzMWhXcmhpQHEhKkZqc0ZleDckJCEzaSR5TFxLd2JuKUZqcyQiM1JTLnFWQW8xPEZqczckNyQkITMzMisrKysrKyEpRmpzJCIzXVc9QSVlaFNkI0Zqc0ZbeTckRmF5NyQkITNzPyRILmAoZTl1RmpzJCIzNyQqcHVaMSU0OyRGanM3JDckJCEzR1RgdHVgaXdwRmpzJCIzaTIrKysrKytPRmpzRmd5NyRGXXo3JCQhM0FTU18yKzNwZkZqcyQiM21LSWswKyJvWiVGanM3JDckJCEzLzIrKysrKytbRmpzJCIzKT1CRlJeJT4lXCZGanNGY3o3JEZpejckJCEzczw8ZSFSKlJLV0ZqcyQiMyUzSE9IYSpIQ2RGanM3JDckJCEzbSo+L1VgZT4qUkZqcyQiM2EyKysrKysrZ0Zqc0ZfW2w3JEZlW2w3JCQhM103VCopekctKGYjRmpzJCIzJW9lPypmcndabkZqczckNyQkITMncCsrKysrK2ciRmpzJCIzIXotJik9eUhBRyhGanNGW1xsNyRGYVxsNyQkITMzWz1qXVw5P2NGYHgkIjM4IlIoSHIzXkB3RmpzNyQ3JCQiMyNHKioqKioqKioqKioqZiJGanMkIjM3LkNQXXc+RyQpRmpzRmdcbDckNyQkIjM1JCoqKioqKioqKioqKmYiRmpzRmBdbDckJCIzUzkhZi0kSHYjbyJGanMkIjM/VGRJLWAkekwpRmpzNyQ3JCQiMz1VW1oqeiQ+NUFGanMkIjNZMisrKysrKyUpRmpzRmZdbDckRlxebDckJCIzSVEpUUoiSGwnXCVGanMkIjNJdWU5Oi5eRicpRmpzNyQ3JCQiMzskKioqKioqKioqKioqeiVGanMkIjNnPT0salZwZCcpRmpzRmJebDckRmhebDckJCIzXyQpKXl4a3FdKXpGanMkIjMoKVJlOzlxPjYlKUZqczckNyQkIjN3JCoqKioqKioqKioqKip6RmpzJCIzaUsqPiU0Oy81JSlGanNGXl9sNyQ3JCQiM1cqKioqKioqKioqKio+NkYsJCIzMzZJJTNrJWVcdUZqczckJCIzNyI+OUdRKltSISlGanNGX15sNyRGX2BsNyQkIjNtIyoqKioqKioqKioqKip6RmpzJCIzdEwqPiU0Oy81JSlGanM3JDckJCIzXSoqKioqKioqKioqKlI5RiwkIjNZNWQvTCNIdHkmRmpzNyQkIjMyJFxpLSNHRy85RixGaFtsNyRGXmFsRmpfbDckNyQkIjMhKSoqKioqKioqKioqKmY8RiwkIjMsYmQiemE0Vi0kRmpzNyQkIjM9KkhYKEhtWys8RixGYHo3JEZoYWw3JEZqYGwkIjNNNGQvTCNIdHkmRmpzNyQ3JCQiM2kqKioqKioqKioqKip6P0YsJCEzWTQ+SFl2WnU3RmpzNyQkIjM3I0ciUTAoNGAyI0YsJCEzSyMqKioqKioqKioqKio+IkZqczckNyQkIjNvIkciUTAoNGAyI0YsRmh3NyQkIjNFRkAhXCpmL3E/RiwkITM5XWZ3aFxNRDZGanM3JDckJCIzZyZlJSp5bCM0MT5GLEZleEZeY2w3JDckJCIzOiZlJSp5bCM0MT5GLEZleDckJCIzYyoqKioqKioqKioqKmY8RixGZmFsNyQ3JCQiM1kqKioqKioqKioqKioqUiNGLCQhM1U1JWZMeWNhMilGanM3JCQiM102NDZDNUU2QkYsRmR1NyQ3JCQiMyU+IjQ2QzVFNkJGLEZkdTckJCIzTU9XLV9ya2pBRiwkITNVbks9U09OeFxGanM3JDckJCIzJ1wtMXJIPSYqPiNGLEZgdkZbZWw3JEZhZWxGYGJsNyQ3JCQiM0oqKioqKioqKioqKio+RkYsJCEzL1tBIip6KCo0UT1GLDckJCIzaUNFdHRNUjRGRixGYnA3JDckRlxmbEZmcDckJCIzRVZPc1gvWjFGRiwkITN5SkZITUcmKSp5IkYsNyQ3JCQiM2JYYTlOI2UtayNGLEZhcUZgZmw3JEZmZmw3JCQiM0lKZVc3NzI8RUYsJCEzO3RWTDRNIUdbIkYsNyQ3JCQiMy9zQEBWNTxvREYsJCEzJiopKioqKioqKioqKio+OEYsRmpmbDckNyRGYWdsRl1yNyQkIjM4L3JjYjEsQERGLCQhM29GYG4iKnp2cTZGLDckNyQkIjNJKSllNCQ9SkJcI0YsRmlyRmdnbDckRl1obDckJCIzTF4wUzd2bTpDRiwkITNvR1QrVmpdPCYpRmpzNyQ3JCQiMz05MHVZMnM2Q0YsRmh0RmFobDckNyQkIjNpOTB1WTJzNkNGLCQhMy0kKioqKioqKioqKioqUilGanNGX2RsNyQ3JCQiMycqPiF6MWYoPSgpSEYsRi03JCQiMyNRZERlPFZtKEhGLCQhM2EhPXA9USNbX0hGLDckNyQkIjNCInlrMklJUiRIRixGOUZkaWw3JEZqaWw3JCQiM24lW1kmcFdRN0hGLCQhMyNSJylmQE4pR2tFRiw3JDckJCIzLyM9Z1JXLip6R0YsRkVGXmpsNyRGZGpsNyQkIjNVaVliJzNzbSVHRiwkITNxJypmIlwxL11QI0YsNyQ3JCQiM28nNCtmRikqWyNHRixGUUZoamw3JEZeW203JCQiMy1DJmZJa0MhekZGLCQhMzdWWUgjW29VMyNGLDckNyQkIjMjZXMoW0klXCdvRkYsRmduRmJbbTckNyQkIjNRRHhbSSVcJ29GRixGZ25GZmVsLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJEYvRmVcbUZmXG0tJStBWEVTTEFCRUxTRzYkUSJ4NiJRInlGW11tLSUoU0NBTElOR0c2IyUsQ09OU1RSQUlORURHy=0 setzen und x-Werte bestimmenfsolve(subs(y=0,gleichung),x);NiQkISsrKysrNSEiKiQiKysrKys/RiU=Steigung an Kurve errechnensteigung:=-diff(gleichung,x)/diff(gleichung,y);NiM+SSlzdGVpZ3VuZ0c2IiwkKiYsJkkieEdGJSIiIyEiIiIiIkYsLCYtSSRleHBHNiRJKnByb3RlY3RlZEdGMUkoX3N5c2xpYkdGJTYjSSJ5R0YlRixGLEYsRitGKw==Tangentengleichung f\374r den Punkt (-1,0)steigung1:=subs({x=-1,y=0},steigung);NiM+SSpzdGVpZ3VuZzFHNiIsJCokLCYtSSRleHBHNiRJKnByb3RlY3RlZEdGLEkoX3N5c2xpYkdGJTYjIiIhIiIiRjBGMCEiIiIiJA==x0:=-1;y0:=0; y=steigung1*(x-x0)+y0;NiM+SSN4MEc2IiEiIg==NiM+SSN5MEc2IiIiIQ==NiMvSSJ5RzYiLCZJInhHRiUjIiIkIiIjRigiIiI=Tangentengleichung f\374r den Punkt (2,0)steigung2:=subs({x=2,y=0},steigung);NiM+SSpzdGVpZ3VuZzJHNiIsJCokLCYtSSRleHBHNiRJKnByb3RlY3RlZEdGLEkoX3N5c2xpYkdGJTYjIiIhIiIiRjBGMCEiIiEiJA==x0:=2;y0:=0; y=steigung2*(x-x0)+y0;NiM+SSN4MEc2IiIiIw==NiM+SSN5MEc2IiIiIQ==NiMvSSJ5RzYiLCZJInhHRiUjISIkIiIjIiIkIiIi
<Text-field layout="_pstyle20" style="_cstyle19">Aufgabe 2 c) und d)</Text-field>Die implizite Gleichung wird eingegebengleichung:=exp(y)+y+x^2-x-3;NiM+JSJwR2YqNiMlInhHNiI2JCUpb3BlcmF0b3JHJSZhcnJvd0dGKCwoKiYiIiMiIiIpOSQiIiRGL0YvKiZGMkYvKUYxRi5GL0YvIiImRi9GKEYoRig=Die partielle Ableitung der Gleichung nach y muss ungleich 0 sein, um nach y aufl\366sen zu k\366nnendiff(gleichung,y)=0;NiMvLCYtSSRleHBHNiRJKnByb3RlY3RlZEdGKEkoX3N5c2xpYkc2IjYjSSJ5R0YqIiIiRi1GLSIiIQ==Die partielle Ableitung der Gleichung nach y ist (im Reellen) immer ungleich 0 solve( diff(gleichung,y)=0, y);NiMqJl4jIiIiRiVJI1BpR0kqcHJvdGVjdGVkR0YnRiU=F\374r horizonale Tangenten muss gelten, dass die partielle Ableitung der Gleichung nach x gleich 0 istsolve( diff(gleichung,x)=0, x);NiMjIiIiIiIjDer zu x=1/2 geh\366rige y-Wert wird berechnetygleichung:=subs(x=1/2,gleichung);NiM+SSt5Z2xlaWNodW5nRzYiLCgtSSRleHBHNiRJKnByb3RlY3RlZEdGKkkoX3N5c2xpYkdGJTYjSSJ5R0YlIiIiRi1GLiMhIzgiIiVGLg==solve(ygleichung,y);evalf(%);NiMsJi1JKUxhbWJlcnRXRzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2Iy1JJGV4cEdGJjYjIyIjOCIiJSEiIkYuIiIiNiMkIipzIWV6JykhIio=
Bogenl\344nge
<Text-field layout="_pstyle22" style="_cstyle21"><Font style="_cstyle19">Aufgabe 1</Font></Text-field>Die Archimedische Spirale wird in Parameterdarstellung eingegebenxphi:=phi*cos(phi); yphi:=phi*sin(phi);NiM+SSV4cGhpRzYiKiZJJHBoaUdGJSIiIi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNGJ0YoNiM+SSV5cGhpRzYiKiZJJHBoaUdGJSIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNGJ0YoDie Ableitungen nach phi werden berechnetxphipunkt:=diff(xphi,phi); yphipunkt:=diff(yphi,phi);NiM+SSp4cGhpcHVua3RHNiIsJi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJJHBoaUdGJSIiIiomRi1GLi1JJHNpbkdGKUYsRi4hIiI=NiM+SSp5cGhpcHVua3RHNiIsJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliR0YlNiNJJHBoaUdGJSIiIiomRi1GLi1JJGNvc0dGKUYsRi5GLg==Das Geschwindigkeitsquadrat wird ausgerechnetgeschwquad:=xphipunkt^2+yphipunkt^2; simplify(%); NiM+SStnZXNjaHdxdWFkRzYiLCYqJCwmLUkkY29zRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2I0kkcGhpR0YlIiIiKiZGL0YwLUkkc2luR0YrRi5GMCEiIiIiI0YwKiQsJkYyRjAqJkYvRjBGKUYwRjBGNUYwNiMsJiokSSRwaGlHNiIiIiMiIiJGKEYo\334ber den Betrag des Geschwindigkeitsvektors wird integriertint(sqrt(geschwquad), phi=0..2*Pi); evalf(%);NiMsJiomSSNQaUdJKnByb3RlY3RlZEdGJiIiIiwmRidGJyokRiUiIiMiIiUjRidGKkYnLUkjbG5HNiRGJkkoX3N5c2xpYkc2IjYjLCZGJSEiIyokRihGLEYnIyEiIkYqNiMkIis6JUhjNyMhIik=
<Text-field layout="_pstyle22" style="_cstyle21"><Font style="_cstyle19">Aufgabe 2</Font></Text-field>Die Funktion wird eingegebenf:=sin(x);NiM+SSJmRzYiLUkkc2luRzYkSSpwcm90ZWN0ZWRHRilJKF9zeXNsaWJHRiU2I0kieEdGJQ==Die Ableitung der Funktion wird berechnetfx:=diff(f,x);NiM+SSNmeEc2Ii1JJGNvc0c2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliR0YlNiNJInhHRiU=\334ber sqrt(1+Ableitung^2) wird integriert, das ergibt die Bogenl\344ngeint(sqrt(1+fx^2),x=0..Pi); evalf(%);NiMsJComIiIjIyIiIkYlLUkqRWxsaXB0aWNFRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHNiI2IywkKiRGJUYmRiZGJ0YlNiMkIispeSg+P1EhIio=\334ber f wird integriert, das ergibt den Fl\344cheninhaltint(f,x=0..Pi);NiMiIiM=
Felder, Kurvenintegrale, Wegunabh\344ngigkeit
<Text-field layout="_pstyle24" style="_cstyle26">Aufgabe 1</Text-field>with(linalg):Feld wird eingegebenF:=[6*x-2*y^3, -6*x*y^2];NiM+SSJGRzYiNyQsJkkieEdGJSIiJyokSSJ5R0YlIiIkISIjLCQqJkYoIiIiRisiIiMhIic=Kurve1-------------------------------------------------------------------------------------------------------------------------------------------------x1t:= t; y1t:= t^2;NiM+SSR4MXRHNiJJInRHRiU=NiM+SSR5MXRHNiIqJEkidEdGJSIiIw==Ableitung der Kurve1x1tpunkt:= diff(x1t,t); y1tpunkt:= diff(y1t,t); NiM+SSl4MXRwdW5rdEc2IiIiIg==NiM+SSl5MXRwdW5rdEc2IiwkSSJ0R0YlIiIjDer Integrand von Kurve1 wird berechnetintegrand1:= subs({x=x1t,y=y1t},F[1]) * x1tpunkt + subs({x=x1t,y=y1t},F[2]) * y1tpunkt ;NiM+SStpbnRlZ3JhbmQxRzYiLCZJInRHRiUiIicqJEYnRighIzk=Die Integration auf Kurve1 wird durchgef\374hrtint(integrand1,t=0..1);NiMiIiI=Kurve2---------------------------------------------------------------------------------------------------------------------------------------------------------x2t:= t; y2t:= t;NiM+SSR4MnRHNiJJInRHRiU=NiM+SSR5MnRHNiJJInRHRiU=Ableitung der Kurve2x2tpunkt:= diff(x2t,t); y2tpunkt:= diff(y2t,t); NiM+SSl4MnRwdW5rdEc2IiIiIg==NiM+SSl5MnRwdW5rdEc2IiIiIg==Der Integrand von Kurve2 wird berechnetintegrand2:= subs({x=x2t,y=y2t},F[1]) * x2tpunkt + subs({x=x2t,y=y2t},F[2]) * y2tpunkt ;NiM+SStpbnRlZ3JhbmQyRzYiLCZJInRHRiUiIicqJEYnIiIkISIpDie Integration auf Kurve2 wird durchgef\374hrtint(integrand2,t=0..1);NiMiIiI=Berechnung \374ber Potential-------------------------------------------------------------------------------------------------------------------------------Es liegt ein Potential vorpotential(F,[x,y],'Phi');NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Phi;NiMsJiokSSJ4RzYiIiIjIiIkKiZJInlHRiZGKEYlIiIiISIjPhiAnfang:=subs({x=0,y=0}, Phi); PhiEnde:=subs({x=1,y=1}, Phi);NiM+SSpQaGlBbmZhbmdHNiIiIiE=NiM+SShQaGlFbmRlRzYiIiIiPhiEnde-PhiAnfang;NiMiIiI=
<Text-field layout="_pstyle25" style="_cstyle27">Aufgabe 2, Teil a)</Text-field>with(linalg):Feld wird eingegebenF:=[2*x+y,x];NiM+SSJGRzYiNyQsJkkieEdGJSIiI0kieUdGJSIiIkYoEs wird getestet, ob Potential vorliegt (und falls ja, dieses Potential unter Phi gespeichert)potential(F,[x,y],'Phi');NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Phi;NiMsJiokSSJ4RzYiIiIjIiIiKiZJInlHRiZGKEYlRihGKA==Es wird gepr\374ft, ob das gefundene Potential nach Ableiten wirklich das Feld ergibtgrad(Phi,vector([x,y]));NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQsJkkieEdGKCIiI0kieUdGKCIiIkYs
<Text-field layout="_pstyle26" style="_cstyle28">Aufgabe 2, Teil b)</Text-field>with(linalg):Feld wird eingegebenF:=[x+y,x+y];NiM+SSJGRzYiNyQsJkkieEdGJSIiIkkieUdGJUYpRic=Es wird getestet, ob Potential vorliegt (und falls ja, dieses Potential unter Phi gespeichert)potential(F,[x,y],'Phi');NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Phi;NiMsKCokSSJ4RzYiIiIjIyIiIkYnKiZJInlHRiZGKUYlRilGKSokRitGJ0YoEs wird gepr\374ft, ob das gefundene Potential nach Ableiten wirklich das Feld ergibtgrad(Phi,vector([x,y]));NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQsJkkieEdGKCIiIkkieUdGKEYtRis=
<Text-field layout="_pstyle27" style="_cstyle29">Aufgabe 2, Teil c)</Text-field>with(linalg):Feld wird eingegebenF:=[-y/x^2,1/x];NiM+SSJGRzYiNyQsJComSSJ5R0YlIiIiSSJ4R0YlISIjISIiKiRGK0YtEs wird getestet, ob Potential vorliegt (und falls ja, dieses Potential unter Phi gespeichert)potential(F,[x,y],'Phi');NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Phi;NiMqJkkieUc2IiIiIkkieEdGJSEiIg==Es wird gepr\374ft, ob das gefundene Potential nach Ableiten wirklich das Feld ergibtgrad(Phi,vector([x,y]));NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQsJComSSJ5R0YoIiIiSSJ4R0YoISIjISIiKiRGL0Yx
<Text-field layout="_pstyle28" style="_cstyle30">Aufgabe 3</Text-field>with(linalg):Feld wird eingegebenF:=[-y^3+2*sin(z), -3*x*y^2+3*z, 2*x*cos(z)+3*y-2*z];NiM+SSJGRzYiNyUsJiokSSJ5R0YlIiIkISIiLUkkc2luRzYkSSpwcm90ZWN0ZWRHRi9JKF9zeXNsaWJHRiU2I0kiekdGJSIiIywmKiZJInhHRiUiIiJGKUYzISIkRjJGKiwoKiZGNkY3LUkkY29zR0YuRjFGN0YzRilGKkYyISIjEs wird getestet, ob Potential vorliegt (und falls ja, dieses Potential unter Phi gespeichert)potential(F,[x,y,z],'Phi');NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Phi;NiMsKComLCYqJEkieUc2IiIiJCEiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YuSShfc3lzbGliR0YoNiNJInpHRigiIiMiIiJJInhHRihGM0YzKiZGMUYzRidGM0YpKiRGMUYyRio=Es wird gepr\374ft, ob das gefundene Potential nach Ableiten wirklich das Feld ergibtgrad(Phi,vector([x,y,z]));NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyUsJiokSSJ5R0YoIiIkISIiLUkkc2luR0YlNiNJInpHRigiIiMsJiomSSJ4R0YoIiIiRi1GNCEiJEYzRi4sKComRjdGOC1JJGNvc0dGJUYyRjhGNEYtRi5GMyEiIw==Der Wert des Potential am Anfangspunkt wird berechnetPhiAnfang:=subs({x=R,y=0,z=0}, Phi);NiM+SSpQaGlBbmZhbmdHNiIsJComLUkkc2luRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHRiU2IyIiISIiIkkiUkdGJUYvIiIjDer Wert des Potentials am Endpunkt wird berechnetPhiEnde:=subs({x=R,y=0,z=h}, Phi);NiM+SShQaGlFbmRlRzYiLCYqJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YrSShfc3lzbGliR0YlNiNJImhHRiUiIiJJIlJHRiVGLyIiIyokRi5GMSEiIg==Der Wert des Kurvenintegrals ergibt sich aus Wert des Potentials am Endpunkt minus Wert des Potentials am AnfangspunktKurvenintegral:= PhiEnde - PhiAnfang; NiM+SS9LdXJ2ZW5pbnRlZ3JhbEc2IiwmKiYtSSRzaW5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjSSJoR0YlIiIiSSJSR0YlRi8iIiMqJEYuRjEhIiI=
<Text-field layout="_pstyle29" style="_cstyle31">Aufgabe 4</Text-field>with(linalg):Feld wird eingegebenF:=[x, x+y, z];NiM+SSJGRzYiNyVJInhHRiUsJkYnIiIiSSJ5R0YlRilJInpHRiU=Es liegt kein Potential vorpotential(F,[x,y,z]);NiNJJmZhbHNlR0kqcHJvdGVjdGVkR0YkSchraubenliniext:= R*cos(t); yt:= R*sin(t); zt:= h*t/(2*Pi);NiM+SSN4dEc2IiomSSJSR0YlIiIiLUkkY29zRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2I0kidEdGJUYoNiM+SSN5dEc2IiomSSJSR0YlIiIiLUkkc2luRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2I0kidEdGJUYoNiM+SSN6dEc2IiwkKihJImhHRiUiIiJJInRHRiVGKUkjUGlHSSpwcm90ZWN0ZWRHRiwhIiIjRikiIiM=Ableitung der Schraubenliniextpunkt:= diff(xt,t); ytpunkt:= diff(yt,t); ztpunkt:= diff(zt,t); NiM+SSh4dHB1bmt0RzYiLCQqJkkiUkdGJSIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YtSShfc3lzbGliR0YlNiNJInRHRiVGKSEiIg==NiM+SSh5dHB1bmt0RzYiKiZJIlJHRiUiIiItSSRjb3NHNiRJKnByb3RlY3RlZEdGLEkoX3N5c2xpYkdGJTYjSSJ0R0YlRig=NiM+SSh6dHB1bmt0RzYiLCQqJkkiaEdGJSIiIkkjUGlHSSpwcm90ZWN0ZWRHRishIiIjRikiIiM=Der Integrand wird berechnetintegrand:= subs({x=xt,y=yt,z=zt},F[1]) * xtpunkt + subs({x=xt,y=yt,z=zt},F[2]) * ytpunkt + subs({x=xt,y=yt,z=zt},F[3]) * ztpunkt ;NiM+SSppbnRlZ3JhbmRHNiIsKCooSSJSR0YlIiIjLUkkY29zRzYkSSpwcm90ZWN0ZWRHRi1JKF9zeXNsaWJHRiU2I0kidEdGJSIiIi1JJHNpbkdGLEYvRjEhIiIqKCwmKiZGKEYxRipGMUYxKiZGKEYxRjJGMUYxRjFGKEYxRipGMUYxKihJImhHRiVGKUYwRjFJI1BpR0YtISIjI0YxIiIlDie Integration wird ausgef\374hrtint(integrand,t=0..2*Pi);NiMsJiokSSJoRzYiIiIjIyIiIkYnKiZJI1BpR0kqcHJvdGVjdGVkR0YsRilJIlJHRiZGJ0Yp