restart; Differentialquotient, Tangentengleichung und Fehleranalyse Ableitungstechniken, L'Hospital und Kurvendiskussion Aufgabe 5 Die Funktion wird definiert: f:=x->exp(-2*x^2); NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkZXhwR0YlNiMsJCokOSQiIiMhIiNGJUYlRiU= Die Funktion wird gezeichnet: plot(f(x),x=-2..2); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDddbzckJCEiIyIiISQiM2E9Xi16aWlhTCEjQDckJCEzTUxMTCRRNkciPiEjPCQiMzJJMSMqUVMhcGonRi83JCQhM2JtbTtNIVxwJD1GMyQiMyFRVk4jKkhHQjwiISM/NyQkITNNTExMKSlRal48RjMkIjMvdSo9cUcuRTsjRjs3JCQhM0FMTEw9S3ZsO0YzJCIzR3V1PylmRiYqKVFGOzckJCEzd21tO0MyRyFlIkYzJCIzTTR0aixVZ3VuRjs3JCQhM09MTCQzeU81XSJGMyQiMzAnM3lLPDNTNSIhIz43JCQhMyYqKioqKlxuVSkqPTlGMyQiM3lsXC4rXXIjeSJGUDckJCEzU0xMJDNXRFRMIkYzJCIzYT5DR2VVXVdHRlA3JCQhMzUrK11kKFEmXDdGMyQiM2Z2K0dzZiRRUyVGUDckJCEzZ21tbWM0YGk2RjMkIjMhUTFnI1I7cituRlA3JCQhM0tMTExRVyplMyJGMyQiM20zKmZSIzR4ZCUqRlA3JCQhM3crKysrKCk+JyoqKiEjPSQiM0VMLSdmIT1UYjhGZ283JCQhM0UrKysrMCIqSCIqRmdvJCIzYV15IzNyRnopPUZnbzckJCEzNSsrKys4MyZIKUZnbyQiMz1URUBTZVdEREZnbzckJCEzXExMTDNrKHBgKEZnbyQiM1ohKVJrVENpNUtGZ283JCQhM0FubW1tal5ObUZnbyQiMyVwUSdbV1pMWFRGZ283JCQhM2dubW07KilvYGlGZ28kIjM1Q0BQWT82dVhGZ283JCQhMyl6bW1tWWg9KGVGZ28kIjNwaG40SkAqeSwmRmdvNyQkITNcTUwkM1AweFUmRmdvJCIzTUN6XVEzclpiRmdvNyQkITMrLCsrdiNcTilcRmdvJCIzRzRSQmpBRSYzJ0ZnbzckJCEzd01MJDMoZVIhZiVGZ28kIjMnKSkzInAvJVs1YydGZ283JCQhM2NvbW1tQ0MoPiVGZ28kIjNtQXc6akJWSXFGZ283JCQhMzkqKioqKlxGUlhMJEZnbyQiMyl5ImVNd2ozMSEpRmdvNyQkITN0KioqKipcIz0vOERGZ28kIjNaKipvNndyVjgpKUZnbzckJCEzPW1tbTthKmVsIkZnbyQiM18wXjJTek9tJSpGZ283JCQhM19tbTtIOUxpN0ZnbyQiM1FmZkk3KEdqbypGZ283JCQhM2tvbW07V24obylGUCQiMyU0dXg2QiM9XSkqRmdvNyQkITNzTkwkM3g5XmMnRlAkIjM+MmpXMCFwVCIqKkZnbzckJCEzJEcrK103YkRXJUZQJCIzaz1zejRfZ2cqKkZnbzckJCEzJCpwbTt6YSoqPkJGUCQiMyEpM2MoUS5UIyopKipGZ283JCQhM0lxTExMJGVWKD5GOyQiM1NNdFtRPyMqKioqKkZnbzckJCIzTyRmbVROYyRcISpGOyQiM201azU8Qk8pKioqRmdvNyQkIjNxYm07L3JJMj9GUCQiMykqcCVIRG9XPioqKkZnbzckJCIzMV9tIkhkeSc0SkZQJCIzLUBgWSlbeTEpKipGZ283JCQiM1ZbbW1UKzA3VUZQJCIzSS9MclgsZWsqKkZnbzckJCIzOlRtO3pIejtrRlAkIjNEWW4hb28oKXoiKipGZ283JCQiMylRam1tImZgQCcpRlAkIjNnYSJwdHpQQyYpKkZnbzckJCIzbUlMTEwxK1k3RmdvJCIzbW9HI3BmblVwKkZnbzckJCIzJXoqKioqXG5aKUg7RmdvJCIzdzEzKkhpJmUjWypGZ283JCQiM2NrbW07JHkqZUNGZ28kIjNNOE8yam0lNCcpKUZnbzckJCIzZikqKioqKipSXmJKJEZnbyQiM1JFWlV0MUxFISlGZ283JCQiMydlKioqKipcNWFgVEZnbyQiMytFKGZeJlIkPjMoRmdvNyQkIjNPJyoqKlwoM1MqZVhGZ28kIjM3ZEcnW2pBKilmJ0ZnbzckJCIzJ28qKioqXDdSVidcRmdvJCIzUT56UyFwayYzaEZnbzckJCIzbCcqKipcUGNZOWFGZ28kIjNtY0VwPTRtamJGZ283JCQiM1knKioqKipcQGZrZUZnbyQiM19oIzMncDpZRV1GZ283JCQiM1tqbW1UMzBwaUZnbyQiMyFwMChlNHJhY1hGZ283JCQiM19JTExMJjRObidGZ28kIjNBc0NeclNpLlRGZ283JCQiM0EqKioqKioqXCxzYChGZ28kIjM/WGBlclhTNUtGZ283JCQiMyVbbW07ek0pPiQpRmdvJCIzTj8rXnd5di9ERmdvNyQkIjNNKioqKioqKnBmYTwqRmdvJCIzbTA4KnonZXFjPUZnbzckJCIzOUhMTGVnYCEpKipGZ28kIjNNJGUwUUQ/Uk8iRmdvNyQkIjN3KioqKlwjRzJBMyJGMyQiMzpzdFUhXCo+NScqRlA3JCQiMztMTEwkKUdbazZGMyQiMyVIK2N6KGU2U21GUDckJCIzIykqKioqXDd5aF03RjMkIjNJW1VpbSZRLFElRlA3JCQiM3htbW0nKWZkTDhGMyQiMzkpSEJoS2JHJkdGUDckJCIzYm1tbSxGVD05RjMkIjN1KVsta2wxJil5IkZQNyQkIjNGTEwkZSNwYS06RjMkIjNVS29nUiNRUzQiRlA3JCQiMyEqKioqKioqUnYmKXo6RjMkIjMlcGZwKSkzW0Z6J0Y7NyQkIjNJTExMR1VZbztGMyQiMy1JTyM+dVYpPlFGOzckJCIzX21tbTFeclo8RjMkIjNyQz8qPlxPRkEjRjs3JCQiMzQrK11zSUBLPUYzJCIzJHB3KUchcCh5ODdGOzckJCIzNCsrXTIlKTM4PkYzJCIzKWVKND5aXUdpJ0YvNyQkIiIjRixGLS0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGLEZiYGxGY2BsLSUrQVhFU0xBQkVMU0c2JFEieDYiUSFGaGBsLSUlVklFV0c2JDskRjtGYmBsJCIjP0ZiYGw7JCEyM1ReJz5zd2w+RmdvJCIyKVxKblFgKSo+NSEjOw== Die Funktion ist gerade, wie man auch der Zeichnung entnimmt: simplify(f(x)-f(-x)); NiMiIiE= Die Funktion hat keine Nullstellen: solve(f(x)=0,x); Nun werden Extrema ermittelt: F\374r x=0 liegt ein lokales Maximum vor, da die erste Ableitung 0 und die zweite negativ ist. f1:=diff(f(x),x); NiM+SSNmMUc2IiwkKiZJInhHRiUiIiItSSRleHBHNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjLCQqJEYoIiIjISIjRikhIiU= kandidat:=solve(f1=0,x); NiM+SSlrYW5kaWRhdEc2IiIiIQ== f2:=diff(f1,x); NiM+SSNmMkc2IiwmLUkkZXhwRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2IywkKiRJInhHRiUiIiMhIiMhIiUqJkYvRjBGJyIiIiIjOw== subs(x=kandidat,f2); NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMiIiEhIiU= evalf(%); NiMkISIlIiIh Nun werden Wendepunkte ermittelt: x=1/2 und x=-1/2 sind Wendepunkte. kandidat:=[solve(f2=0,x)]; NiM+SSlrYW5kaWRhdEc2IjckIyIiIiIiIyMhIiJGKQ== f3:=diff(f2,x); NiM+SSNmM0c2IiwmKiZJInhHRiUiIiItSSRleHBHNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjLCQqJEYoIiIjISIjRikiI1sqJkYoIiIkRipGKSEjaw== subs(x=kandidat[1],f3); NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMjISIiIiIjIiM7 evalf(%); NiMkIitiMFwvKCohIio= subs(x=kandidat[2],f3); NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMjISIiIiIjISM7 evalf(%); NiMkIStiMFwvKCohIio= Der Grenzwert f\374r x gegen plus/minus unendlich ist jeweils 0: limit(f(x),x=-infinity); NiMiIiE= limit(f(x),x=infinity); NiMiIiE= Newtonverfahren und Taylorentwicklung Aufgabe 1 Die Funktion, deren Nullstelle mit Hilfe des Newtonverfahrens bestimmt werden soll, wird eingegeben: f:=x->3*cos(x)-x; NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRjb3NHRiU2IzkkIiIkRjAhIiJGJUYlRiU= Eine Nullstelle mu\337 im Intervall [1,2] liegen, da die Funktion stetig ist und an den Intervallgrenzen 1 und 2 verschiedene Vorzeichen annimmt: evalf(f(1)); evalf(f(2)); NiMkIio9cCE0aSEiKg== NiMkISs1MFdbSyEiKg== Maple kann die Gleichung f(x)=0 numerisch l\366sen: (Beachte: Hier wurde das Intervall [1,2] f\374r die Suche einer L\366sung vorgegeben.) fsolve(f(x)=0,x,1..2); NiMkIitdNDdxNiEiKg== Nun wird die Iterationsformel f\374r das Newtonverfahren berechnet: f1:=diff(f(x),x); NiM+SSNmMUc2IiwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kieEdGJSEiJCEiIiIiIg== newton:=x-f(x)/f1; NiM+SSduZXd0b25HNiIsJkkieEdGJSIiIiomLCYtSSRjb3NHNiRJKnByb3RlY3RlZEdGLkkoX3N5c2xpYkdGJTYjRiciIiRGJyEiIkYoLCYtSSRzaW5HRi1GMCEiJEYyRihGMkYy Es werden einige Iterationen mit dem Startwert 1 durchgef\374hrt: Digits:=15; x[0]:=1; x[1]:=evalf(subs(x=x[0],newton)); x[2]:=evalf(subs(x=x[1],newton)); x[3]:=evalf(subs(x=x[2],newton)); x[4]:=evalf(subs(x=x[3],newton)); NiM+SSdEaWdpdHNHNiIiIzo= NiM+JkkieEc2IjYjIiIhIiIi NiM+JkkieEc2IjYjIiIiJCIwSiMqZTl0aDwiISM5 NiM+JkkieEc2IjYjIiIjJCIwXHU1ZUUsPCIhIzk= NiM+JkkieEc2IjYjIiIkJCIwYzIrJjQ3cTYhIzk= NiM+JkkieEc2IjYjIiIlJCIwai0rJjQ3cTYhIzk= Der Test ergibt, dass hier wirklich eine Nullstelle vorliegt: f(1.17012); Digits:=10:x:='x': NiMkIiotJEd1TiEjOQ== Funktionen mehrerer Ver\344nderlicher Aufgabe 3 Die Funktion in zwei Ver\344nderlichen wird definiert: f:=(x,y)->sqrt(x-y); NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUklc3FydEc2JEkqcHJvdGVjdGVkR0YwSShfc3lzbGliR0YlNiMsJjkkIiIiOSUhIiJGJUYlRiU= Die Formel f\374r die Tangentialebene wird angegeben: t:=(x,y)->f(x0,y0)+D[1](f)(x0,y0)*(x-x0)+D[2](f)(x0,y0)*(y-y0); NiM+SSJ0RzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgtSSJmR0YlNiRJI3gwR0YlSSN5MEdGJSIiIiomLS0mSSJERzYkSSpwcm90ZWN0ZWRHRjpJKF9zeXNsaWJHRiU2I0YzNiNGL0YwRjMsJjkkRjNGMSEiIkYzRjMqJi0tJkY4NiMiIiNGPUYwRjMsJjklRjNGMkZARjNGM0YlRiVGJQ== Die Tangentialebene an der Stelle x0=1, y0=-3 wird berechnet: x0:=1; y0:=-3; NiM+SSN4MEc2IiIiIg== NiM+SSN5MEc2IiEiJA== t(x,y); NiMsKCIiIkYkSSJ4RzYiI0YkIiIlSSJ5R0YmIyEiIkYo Funktion und Tangentialebene werden gezeichnet: p1:=plot3d(f(x,y),x=-149..151,y=-153..147,axes=boxed): p2:=plot3d(t(x,y),x=-149..151,y=-153..147,axes=boxed): with(plots,display): Zun\344chst wird die Funktion gezeichnet: (Beachte: Die Funktion ist nur f\374r x>=y definiert.) display([p1]); LSUnUExPVDNERzYlLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRis3Ozc7JCIiI0YrSSp1bmRlZmluZWRHSSpwcm90ZWN0ZWRHRjhGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIistIz4/MSUhIiokIisrKysrP0Y8RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrMls7JlEmRjxGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2okXD9XJ0Y8RkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIitHI3AlW3RGPEZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOkt2YSIpRjxGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKzxXPikpKSlGPEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrTktjbCYqRjxGTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKy5SISk+NSEiKUZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrZDtOejVGVEZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrcDt5TjZGVEZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrRHhgKj0iRlRGWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2x0JzRDIkZURmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrIXpbLkgiRlRGaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOykzekwiRlRGXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK11fJFFRIkZURl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrJ28mR0c5RlRGYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrKCpRUnI5RlRGZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3Rjc3OyQiKyZmdUteIkZURmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGNzc7JCIrRnEtYTpGVEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3NzskIitYeHQkZiJGVEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGNzc7JCIrc0ZbSztGVEZhcEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3Rjc3OyQiKzQkSC5uIkZURmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3Rjc3OyQiKzNyTDI8RlRGZ3BGZHBGYXBGXnBGW3BGaG9GZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9Rjc3OyQiK3gmZk51IkZURmpwRmdwRmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPS0lK0FYRVNMQUJFTFNHNiVRIng2IlEieUZjcVEhRmNxLSUqQVhFU1NUWUxFRzYjJSRCT1hH Nun wird die Tangentialebene gezeichnet: display([p2]); LSUnUExPVDNERzYlLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRitYLDYiRjRGNFtnbCchJSIhISNcYm0iOiI6NDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMEMwNTBCMDAwMDAwMDAwMDBDMDUxNzgwMDAwMDAwMDAwQzA1MjQwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDBDMDRGRDAwMDAwMDAwMDAwQzA1MEIwMDAwMDAwMDAwMEMwNTE3ODAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDBDMDUwQjAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMDQwNTFCMDAwMDAwMDAwMDA0MDUwRTgwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDA0MDUyNzgwMDAwMDAwMDAwNDA1MUIwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwNDA1MzQwMDAwMDAwMDAwMDQwNTI3ODAwMDAwMDAwMDA0MDUxQjAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMC0lK0FYRVNMQUJFTFNHNiVRInhGNFEieUY0USFGNC0lKkFYRVNTVFlMRUc2IyUkQk9YRw== Nun werden Funktion und Tangentialebene gemeinsam gezeichnet: display([p1,p2]); LSUnUExPVDNERzYmLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRis3Ozc7JCIiI0YrSSp1bmRlZmluZWRHSSpwcm90ZWN0ZWRHRjhGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIistIz4/MSUhIiokIisrKysrP0Y8RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrMls7JlEmRjxGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2okXD9XJ0Y8RkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIitHI3AlW3RGPEZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOkt2YSIpRjxGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKzxXPikpKSlGPEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrTktjbCYqRjxGTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKy5SISk+NSEiKUZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrZDtOejVGVEZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrcDt5TjZGVEZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrRHhgKj0iRlRGWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2x0JzRDIkZURmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrIXpbLkgiRlRGaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOykzekwiRlRGXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK11fJFFRIkZURl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrJ28mR0c5RlRGYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrKCpRUnI5RlRGZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3Rjc3OyQiKyZmdUteIkZURmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGNzc7JCIrRnEtYTpGVEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3NzskIitYeHQkZiJGVEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGNzc7JCIrc0ZbSztGVEZhcEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3Rjc3OyQiKzQkSC5uIkZURmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3Rjc3OyQiKzNyTDI8RlRGZ3BGZHBGYXBGXnBGW3BGaG9GZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9Rjc3OyQiK3gmZk51IkZURmpwRmdwRmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPS1GJjYlRihGLlgsNiJGYnFGYnFbZ2wnISUiISEjXGJtIjoiOjQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDBDMDUwQjAwMDAwMDAwMDAwQzA1MTc4MDAwMDAwMDAwMEMwNTI0MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMEMwNTBCMDAwMDAwMDAwMDBDMDUxNzgwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDBDMDRGRDAwMDAwMDAwMDAwQzA1MEIwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDA0MDUxQjAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwNDA1Mjc4MDAwMDAwMDAwMDQwNTFCMDAwMDAwMDAwMDA0MDUwRTgwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMDQwNTM0MDAwMDAwMDAwMDA0MDUyNzgwMDAwMDAwMDAwNDA1MUIwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDAtJStBWEVTTEFCRUxTRzYpUSJ4RmJxUSJ5RmJxUSFGYnEtJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM1JStIT1JJWk9OVEFMR0ZeckZeci0lKkFYRVNTVFlMRUc2IyUkQk9YRw== Aufgabe 5 Die Funktion in zwei Ver\344nderlichen wird angegeben: f:=(x,y)->y*exp(x); NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JSIiIi1JJGV4cEc2JEkqcHJvdGVjdGVkR0YzSShfc3lzbGliR0YlNiM5JEYvRiVGJUYl with(linalg): Warning, the protected names norm and trace have been redefined and unprotected Der Gradient wird berechnet: grad(f(x,y),[x,y]); NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQqJkkieUdGKCIiIi1JJGV4cEdGJTYjSSJ4R0YoRi1GLg== Der Gradient an der Stelle (0,5) wird berechnet: subs({x=0,y=5},%); NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQsJC1JJGV4cEdGJTYjIiIhIiImRiw= gradient:=simplify(%); NiM+SSlncmFkaWVudEc2Ii1JJ3ZlY3Rvckc2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliR0YlNiM3JCIiJiIiIg== Das Skalarprodukt mit dem Richtungsvektor wird berechnet: v:=[1/sqrt(2),1/sqrt(2)]; NiM+SSJ2RzYiNyQsJCokIiIjIyIiIkYpRipGJw== dotprod(gradient,v); NiMsJCokIiIjIyIiIkYlIiIk Aufgabe 6, Teil a) Die Funktion wird eingegeben: f:=(x,y)->ln(x^2+y^2+1); NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkjbG5HNiRJKnByb3RlY3RlZEdGMEkoX3N5c2xpYkdGJTYjLCgqJDkkIiIjIiIiKiQ5JUY2RjdGN0Y3RiVGJUYl Die ersten partiellen Ableitungen werden berechnet: fx:=diff(f(x,y),x); NiM+SSNmeEc2IiwkKiZJInhHRiUiIiIsKCokRigiIiNGKSokSSJ5R0YlRixGKUYpRikhIiJGLA== fy:=diff(f(x,y),y); NiM+SSNmeUc2IiwkKiZJInlHRiUiIiIsKCokSSJ4R0YlIiIjRikqJEYoRi1GKUYpRikhIiJGLQ== Die ersten partiellen Ableitungen werden gleich 0 gesetzt: solve({fx=0,fy=0},{x,y}); NiM8JC9JInhHNiIiIiEvSSJ5R0YmRic= Die zweiten partiellen Ableitungen werden berechnet: fxx:=diff(fx,x); NiM+SSRmeHhHNiIsJiokLCgqJEkieEdGJSIiIyIiIiokSSJ5R0YlRitGLEYsRiwhIiJGKyomRipGK0YoISIjISIl fxy:=diff(fx,y); NiM+SSRmeHlHNiIsJCooSSJ4R0YlIiIiLCgqJEYoIiIjRikqJEkieUdGJUYsRilGKUYpISIjRi5GKSEiJQ== fyy:=diff(fy,y); NiM+SSRmeXlHNiIsJiokLCgqJEkieEdGJSIiIyIiIiokSSJ5R0YlRitGLEYsRiwhIiJGKyomRi5GK0YoISIjISIl Die Determinante der Hesse-Matrix wird an der gefundenen Stelle ausgewertet: subs({x=0,y=0},fxx*fyy-fxy^2); NiMiIiU= Analog wird fxx an der gefundenen Stelle ausgewertet: Es liegt ein lokales Minimum vor. subs({x=0,y=0},fxx); NiMiIiM= Maple ermittelt Minimum und Maximum (sowie die Stelle, an der sie angenommen werden) auch automatisch: (Beachte: Ein Maximum liegt nicht vor, ein Minimum wird an (0,0) angenommen.) maximize(f(x,y),location); NiRJKWluZmluaXR5R0kqcHJvdGVjdGVkR0YkPCM3JEklRkFJTEdGJEYj minimize(f(x,y),location); NiQiIiE8IzckSSVGQUlMR0kqcHJvdGVjdGVkR0YnRiM= Aufgabe 6, Teil b) Die Funktion wird eingegeben: f:=(x,y)->x^5*y+x*y^5+x*y; NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJjkkIiImOSUiIiJGMiomRi9GMkYxRjBGMiomRi9GMkYxRjJGMkYlRiVGJQ== Die ersten partiellen Ableitungen werden berechnet: fx:=diff(f(x,y),x); NiM+SSNmeEc2IiwoKiZJInhHRiUiIiVJInlHRiUiIiIiIiYqJEYqRixGK0YqRis= fy:=diff(f(x,y),y); NiM+SSNmeUc2IiwoKiRJInhHRiUiIiYiIiIqJkYoRipJInlHRiUiIiVGKUYoRio= Die ersten partiellen Ableitungen werden gleich 0 gesetzt: fsolve({fx=0,fy=0},{x,y}); NiM8JC9JInlHNiIkIiIhRigvSSJ4R0YmRic= Die zweiten partiellen Ableitungen werden berechnet: fxx:=diff(fx,x); fxy:=diff(fx,y); fyy:=diff(fy,y); NiM+SSRmeHhHNiIsJComSSJ4R0YlIiIkSSJ5R0YlIiIiIiM/ NiM+SSRmeHlHNiIsKCokSSJ4R0YlIiIlIiImKiRJInlHRiVGKUYqIiIiRi0= NiM+SSRmeXlHNiIsJComSSJ4R0YlIiIiSSJ5R0YlIiIkIiM/ Die Determinante der Hesse-Matrix wird an der ermittelten Stelle ausgewertet: Es liegt ein Sattelpunkt vor. subs({x=0,y=0},fxx*fyy-fxy^2); NiMhIiI= Die Funktionen maximize und minimize liefern hier kein Ergebnis, da ja kein Minimum oder Maximum vorliegt: maximize(f(x,y),location); NiRJKWluZmluaXR5R0kqcHJvdGVjdGVkR0YkPCc3JDwkL0kieUc2IkYjL0kieEdGKkYjRiM3JDwkL0YsIiIhRihGIzckPCQvRilGMEYrRiM3JDwkL0YpLUkpSU5URVJWQUxHRio2IzssJEYjISIiRjAvRixGO0YjNyQ8JC9GKUY7L0YsRjdGIw== minimize(f(x,y),location); NiQsJEkpaW5maW5pdHlHSSpwcm90ZWN0ZWRHRiUhIiI8KDckPCQvSSJ5RzYiRiQvSSJ4R0YsLUkpSU5URVJWQUxHRiw2IztGIyIiIUYjNyQ8JC9GK0YzL0YuRiNGIzckPCQvRi5GJC9GK0YvRiM3JDwkRipGN0YjNyQ8JEY6L0YrRiNGIzckPCQvRi5GM0ZARiM=