restart;Differentialquotient, Tangentengleichung und Fehleranalyse
<Text-field layout="Heading 1" style="_cstyle257"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 1</Font></Text-field>Die Funktion wird eingegeben:f:=x->(3+x)/(3-x);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiYsJiIiJCIiIjkkRi9GLywmRi5GL0YwISIiRjJGJUYlRiU=Maple leitet die Funktion ab:f1:=diff(f(x),x);NiM+SSNmMUc2IiwmKiQsJiIiJCIiIkkieEdGJSEiIkYsRioqJiwmRilGKkYrRipGKkYoISIjRio=subs(x=2,f1);NiMiIic=Im Folgenden zwei M\366glichkeiten, den Grenzwert des Differenzenquotienten zu berechnen:limit( (f(x)-f(2))/(x-2), x=2);NiMiIic=limit( (f(2+h)-f(2))/h, h=0);NiMiIic=
<Text-field layout="Heading 1" style="_cstyle259"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2</Font></Text-field>Die Funktion wird eingegeben:f:=x->2*x^3;NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCQqJDkkIiIkIiIjRiVGJUYlDie Tangente wird definiert:t:=x->f(x0)+D(f)(x0)*(x-x0);NiM+SSJ0RzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSJmR0YlNiNJI3gwR0YlIiIiKiYtLUkiREdGJTYjRi5GL0YxLCY5JEYxRjAhIiJGMUYxRiVGJUYlDie Tangente wird an der Stelle 2 berechnet:x0:=2;t(x);NiM+SSN4MEc2IiIiIw==NiMsJiEjSyIiIkkieEc2IiIjQw==
<Text-field layout="Heading 1" style="_cstyle261"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 3</Font></Text-field>Funktion V(q) wird definiert:V:=q->Pi/6*q^3;NiM+SSJWRzYiZio2I0kicUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCQqJkkjUGlHSSpwcm90ZWN0ZWRHRi8iIiI5JCIiJCNGMCIiJ0YlRiVGJQ==Die Ableitung wird berechnet:V1:=diff(V(q),q);NiM+SSNWMUc2IiwkKiZJI1BpR0kqcHJvdGVjdGVkR0YpIiIiSSJxR0YlIiIjI0YqRiw=Der relative Fehler dV/V wird durch V'(q)*dq/V(q) abgesch\344tzt: V1*dq/V(q);NiMsJComSSJxRzYiISIiSSNkcUdGJiIiIiIiJA==
Ableitungstechniken, L'Hospital und Kurvendiskussion
<Text-field layout="Heading 1" style="_cstyle263"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 1, Teil a)</Font></Text-field>Die Funktion wird eingegeben:f:=x->x^3/(sqrt(x)-x^2);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiJCwmLUklc3FydEdGJTYjRi0iIiIqJEYtIiIjISIiRjZGJUYlRiU=Die Ableitung wird berechnet und vereinfacht:diff(f(x),x);NiMsJiomSSJ4RzYiIiIjLCYqJEYlIyIiIkYnRisqJEYlRichIiJGLSIiJCooRiVGLkYoISIjLCYqJEYlI0YtRidGKkYlRjBGK0Ytf1:=normal(%);NiM+SSNmMUc2IiwkKihJInhHRiUjIiIkIiIjLCZGKCIiJiokRigjRi1GKyEiIyIiIiwmKiRGKCNGMUYrISIiKiRGKEYrRjFGMEY0expand(numer(f1))/denom(f1);NiMsJComLCYqJEkieEc2IiMiIiYiIiNGKiokRiciIiUhIiMiIiIsJiokRicjRi9GKyEiIiokRidGK0YvRi5GMg==Es wird untersucht, wann der Nenner gleich 0 ist:solve(denom(f(x))=0,x);NiQiIiEiIiI=
<Text-field layout="Heading 1" style="_cstyle265"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 1, Teil b)</Font></Text-field>Ditto f\374r die zweite Funktion:f:=x->x^3*ln( (exp(x)-x)^2 );NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiJC1JI2xuR0YlNiMqJCwmLUkkZXhwR0YlNiNGLSIiIkYtISIiIiIjRjdGJUYlRiU=diff(f(x),x);NiMsJiomSSJ4RzYiIiIjLUkjbG5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJjYjKiQsJi1JJGV4cEdGKjYjRiUiIiJGJSEiIkYnRjMiIiQqKEYlRjVGL0Y0LCZGMEYzRjRGM0YzRic=simplify(%,ln);NiMsJiomSSJ4RzYiIiIjLUkjbG5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJjYjKiQsJi1JJGV4cEdGKjYjRiUhIiJGJSIiIkYnRjQiIiQqKEYlRjUsJkYwRjRGJUYzRjMsJkYwRjRGM0Y0RjRGJw==
<Text-field layout="Heading 1" style="_cstyle267"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2, Teil a)</Font></Text-field>Die Funktion wird definiert:f:=x->(c*x-d)^m;NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKSwmKiZJImNHRiUiIiI5JEYwRjBJImRHRiUhIiJJIm1HRiVGJUYlRiU=Im Folgenden werden Ableitungen gebildet:assume(m,integer);assume(m>1);Die erste Ableitung, etc.:f1:=simplify(diff(f(x),x));NiM+SSNmMUc2IiooKSwmKiZJImNHRiUiIiJJInhHRiVGK0YrSSJkR0YlISIiLCZJI218aXJHRiVGK0YuRitGK0YwRitGKkYrf2:=simplify(diff(f1,x));NiM+SSNmMkc2IioqKSwmKiZJImNHRiUiIiJJInhHRiVGK0YrSSJkR0YlISIiLCZJI218aXJHRiVGKyEiI0YrRissJkYwRitGLkYrRitGKiIiI0YwRis=f3:=simplify(diff(f2,x)); m:='m';NiM+SSNmM0c2IiosKSwmKiZJImNHRiUiIiJJInhHRiVGK0YrSSJkR0YlISIiLCZJI218aXJHRiVGKyEiJEYrRissJkYwRishIiNGK0YrRioiIiQsJkYwRitGLkYrRitGMEYrNiM+SSJtRzYiRiQ=
<Text-field layout="Heading 1" style="_cstyle269"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2, Teil b)</Font></Text-field>Die Funktion wird eingegeben:f:=x->exp(-x)*cos(x);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiYtSSRleHBHNiRJKnByb3RlY3RlZEdGMEkoX3N5c2xpYkdGJTYjLCQ5JCEiIiIiIi1JJGNvc0dGJTYjRjRGNkYlRiVGJQ==Die Ableitungen werden gebildet:(Beachte: Die vierte Ableitung gleicht der urspr\374nglichen Funktion bis auf einen Faktor, ab hier wiederholen sich die Ableitungen.)f1:=diff(f(x),x);NiM+SSNmMUc2IiwmKiYtSSRleHBHNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjLCRJInhHRiUhIiIiIiItSSRjb3NHRio2I0YvRjFGMComRihGMS1JJHNpbkdGKkY0RjFGMA==f2:=diff(f1,x);NiM+SSNmMkc2IiwkKiYtSSRleHBHNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjLCRJInhHRiUhIiIiIiItSSRzaW5HRio2I0YvRjEiIiM=f3:=diff(f2,x);NiM+SSNmM0c2IiwmKiYtSSRleHBHNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjLCRJInhHRiUhIiIiIiItSSRzaW5HRio2I0YvRjEhIiMqJkYoRjEtSSRjb3NHRipGNEYxIiIjf4:=diff(f3,x);NiM+SSNmNEc2IiwkKiYtSSRleHBHNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjLCRJInhHRiUhIiIiIiItSSRjb3NHRio2I0YvRjEhIiU=
<Text-field layout="Heading 1" style="_cstyle271"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 3</Font></Text-field>f:=x->arcsin(x);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUknYXJjc2luR0YlNiM5JEYlRiVGJQ==Maple kann die Ableitung der Funktion arcsin(x) direkt angeben:diff(f(x),x);NiMqJCwmIiIiRiUqJEkieEc2IiIiIyEiIiNGKkYpMaple kann aber auch die Formel f\374r die Ableitung der Umkehrfunktion einer Funktion auswerten:f^(-1) ' (x) = 1 / (f ' (f^(-1) (x)).(Beachte: f= sin, f^(-1) = arcsin.)f:=x->sin(x); fx:=diff(f(x),x); subs(x=arcsin(x),fx); 1/simplify(%);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc2luRzYkSSpwcm90ZWN0ZWRHRi9JKF9zeXNsaWJHRiU2IzkkRiVGJUYlNiM+SSNmeEc2Ii1JJGNvc0c2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliR0YlNiNJInhHRiU=NiMtSSRjb3NHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjLUknYXJjc2luR0YlNiNJInhHRig=NiMqJCwmIiIiRiUqJEkieEc2IiIiIyEiIiNGKkYp
<Text-field layout="Heading 1" style="_cstyle273"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 4</Font></Text-field>limit((exp(x)-exp(-x)-2*x)/(x-sin(x)),x=0);NiMiIiM=assume(m,integer); assume(m>1), assume(a>1); limit(x^(-m)*a^x,x=infinity);NiNJKWluZmluaXR5R0kqcHJvdGVjdGVkR0Ykm:='m': a:='a':
<Text-field layout="Heading 1" style="_cstyle275"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 5</Font></Text-field>Die Funktion wird definiert:f:=x->exp(-2*x^2);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkZXhwR0YlNiMsJCokOSQiIiMhIiNGJUYlRiU=Die Funktion wird gezeichnet:plot(f(x),x=-2..2);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDddbzckJCEiIyIiISQiM2E9Xi16aWlhTCEjQDckJCEzTUxMTCRRNkciPiEjPCQiMzJJMSMqUVMhcGonRi83JCQhM2JtbTtNIVxwJD1GMyQiMyFRVk4jKkhHQjwiISM/NyQkITNNTExMKSlRal48RjMkIjMvdSo9cUcuRTsjRjs3JCQhM0FMTEw9S3ZsO0YzJCIzR3V1PylmRiYqKVFGOzckJCEzd21tO0MyRyFlIkYzJCIzTTR0aixVZ3VuRjs3JCQhM09MTCQzeU81XSJGMyQiMzAnM3lLPDNTNSIhIz43JCQhMyYqKioqKlxuVSkqPTlGMyQiM3lsXC4rXXIjeSJGUDckJCEzU0xMJDNXRFRMIkYzJCIzYT5DR2VVXVdHRlA3JCQhMzUrK11kKFEmXDdGMyQiM2Z2K0dzZiRRUyVGUDckJCEzZ21tbWM0YGk2RjMkIjMhUTFnI1I7cituRlA3JCQhM0tMTExRVyplMyJGMyQiM20zKmZSIzR4ZCUqRlA3JCQhM3crKysrKCk+JyoqKiEjPSQiM0VMLSdmIT1UYjhGZ283JCQhM0UrKysrMCIqSCIqRmdvJCIzYV15IzNyRnopPUZnbzckJCEzNSsrKys4MyZIKUZnbyQiMz1URUBTZVdEREZnbzckJCEzXExMTDNrKHBgKEZnbyQiM1ohKVJrVENpNUtGZ283JCQhM0FubW1tal5ObUZnbyQiMyVwUSdbV1pMWFRGZ283JCQhM2dubW07KilvYGlGZ28kIjM1Q0BQWT82dVhGZ283JCQhMyl6bW1tWWg9KGVGZ28kIjNwaG40SkAqeSwmRmdvNyQkITNcTUwkM1AweFUmRmdvJCIzTUN6XVEzclpiRmdvNyQkITMrLCsrdiNcTilcRmdvJCIzRzRSQmpBRSYzJ0ZnbzckJCEzd01MJDMoZVIhZiVGZ28kIjMnKSkzInAvJVs1YydGZ283JCQhM2NvbW1tQ0MoPiVGZ28kIjNtQXc6akJWSXFGZ283JCQhMzkqKioqKlxGUlhMJEZnbyQiMyl5ImVNd2ozMSEpRmdvNyQkITN0KioqKipcIz0vOERGZ28kIjNaKipvNndyVjgpKUZnbzckJCEzPW1tbTthKmVsIkZnbyQiM18wXjJTek9tJSpGZ283JCQhM19tbTtIOUxpN0ZnbyQiM1FmZkk3KEdqbypGZ283JCQhM2tvbW07V24obylGUCQiMyU0dXg2QiM9XSkqRmdvNyQkITNzTkwkM3g5XmMnRlAkIjM+MmpXMCFwVCIqKkZnbzckJCEzJEcrK103YkRXJUZQJCIzaz1zejRfZ2cqKkZnbzckJCEzJCpwbTt6YSoqPkJGUCQiMyEpM2MoUS5UIyopKipGZ283JCQhM0lxTExMJGVWKD5GOyQiM1NNdFtRPyMqKioqKkZnbzckJCIzTyRmbVROYyRcISpGOyQiM201azU8Qk8pKioqRmdvNyQkIjNxYm07L3JJMj9GUCQiMykqcCVIRG9XPioqKkZnbzckJCIzMV9tIkhkeSc0SkZQJCIzLUBgWSlbeTEpKipGZ283JCQiM1ZbbW1UKzA3VUZQJCIzSS9MclgsZWsqKkZnbzckJCIzOlRtO3pIejtrRlAkIjNEWW4hb28oKXoiKipGZ283JCQiMylRam1tImZgQCcpRlAkIjNnYSJwdHpQQyYpKkZnbzckJCIzbUlMTEwxK1k3RmdvJCIzbW9HI3BmblVwKkZnbzckJCIzJXoqKioqXG5aKUg7RmdvJCIzdzEzKkhpJmUjWypGZ283JCQiM2NrbW07JHkqZUNGZ28kIjNNOE8yam0lNCcpKUZnbzckJCIzZikqKioqKipSXmJKJEZnbyQiM1JFWlV0MUxFISlGZ283JCQiMydlKioqKipcNWFgVEZnbyQiMytFKGZeJlIkPjMoRmdvNyQkIjNPJyoqKlwoM1MqZVhGZ28kIjM3ZEcnW2pBKilmJ0ZnbzckJCIzJ28qKioqXDdSVidcRmdvJCIzUT56UyFwayYzaEZnbzckJCIzbCcqKipcUGNZOWFGZ28kIjNtY0VwPTRtamJGZ283JCQiM1knKioqKipcQGZrZUZnbyQiM19oIzMncDpZRV1GZ283JCQiM1tqbW1UMzBwaUZnbyQiMyFwMChlNHJhY1hGZ283JCQiM19JTExMJjRObidGZ28kIjNBc0NeclNpLlRGZ283JCQiM0EqKioqKioqXCxzYChGZ28kIjM/WGBlclhTNUtGZ283JCQiMyVbbW07ek0pPiQpRmdvJCIzTj8rXnd5di9ERmdvNyQkIjNNKioqKioqKnBmYTwqRmdvJCIzbTA4KnonZXFjPUZnbzckJCIzOUhMTGVnYCEpKipGZ28kIjNNJGUwUUQ/Uk8iRmdvNyQkIjN3KioqKlwjRzJBMyJGMyQiMzpzdFUhXCo+NScqRlA3JCQiMztMTEwkKUdbazZGMyQiMyVIK2N6KGU2U21GUDckJCIzIykqKioqXDd5aF03RjMkIjNJW1VpbSZRLFElRlA3JCQiM3htbW0nKWZkTDhGMyQiMzkpSEJoS2JHJkdGUDckJCIzYm1tbSxGVD05RjMkIjN1KVsta2wxJil5IkZQNyQkIjNGTEwkZSNwYS06RjMkIjNVS29nUiNRUzQiRlA3JCQiMyEqKioqKioqUnYmKXo6RjMkIjMlcGZwKSkzW0Z6J0Y7NyQkIjNJTExMR1VZbztGMyQiMy1JTyM+dVYpPlFGOzckJCIzX21tbTFeclo8RjMkIjNyQz8qPlxPRkEjRjs3JCQiMzQrK11zSUBLPUYzJCIzJHB3KUchcCh5ODdGOzckJCIzNCsrXTIlKTM4PkYzJCIzKWVKND5aXUdpJ0YvNyQkIiIjRixGLS0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGLEZiYGxGY2BsLSUrQVhFU0xBQkVMU0c2JFEieDYiUSFGaGBsLSUlVklFV0c2JDskRjtGYmBsJCIjP0ZiYGw7JCEyM1ReJz5zd2w+RmdvJCIyKVxKblFgKSo+NSEjOw==Die Funktion ist gerade, wie man auch der Zeichnung entnimmt:simplify(f(x)-f(-x));NiMiIiE=Die Funktion hat keine Nullstellen:solve(f(x)=0,x);Nun werden Extrema ermittelt: F\374r x=0 liegt ein lokales Maximum vor, da die erste Ableitung 0 und die zweite negativ ist.f1:=diff(f(x),x);NiM+SSNmMUc2IiwkKiZJInhHRiUiIiItSSRleHBHNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjLCQqJEYoIiIjISIjRikhIiU=kandidat:=solve(f1=0,x);NiM+SSlrYW5kaWRhdEc2IiIiIQ==f2:=diff(f1,x);NiM+SSNmMkc2IiwmLUkkZXhwRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2IywkKiRJInhHRiUiIiMhIiMhIiUqJkYvRjBGJyIiIiIjOw==subs(x=kandidat,f2);NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMiIiEhIiU=evalf(%);NiMkISIlIiIhNun werden Wendepunkte ermittelt:x=1/2 und x=-1/2 sind Wendepunkte.kandidat:=[solve(f2=0,x)];NiM+SSlrYW5kaWRhdEc2IjckIyIiIiIiIyMhIiJGKQ==f3:=diff(f2,x);NiM+SSNmM0c2IiwmKiZJInhHRiUiIiItSSRleHBHNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjLCQqJEYoIiIjISIjRikiI1sqJkYoIiIkRipGKSEjaw==subs(x=kandidat[1],f3);NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMjISIiIiIjIiM7evalf(%);NiMkIitiMFwvKCohIio=subs(x=kandidat[2],f3);NiMsJC1JJGV4cEc2JEkqcHJvdGVjdGVkR0YnSShfc3lzbGliRzYiNiMjISIiIiIjISM7evalf(%);NiMkIStiMFwvKCohIio=Der Grenzwert f\374r x gegen plus/minus unendlich ist jeweils 0:limit(f(x),x=-infinity);NiMiIiE=limit(f(x),x=infinity);NiMiIiE=
Newtonverfahren und Taylorentwicklung
<Text-field layout="Heading 1" style="_cstyle277"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 1</Font></Text-field>Die Funktion, deren Nullstelle mit Hilfe des Newtonverfahrens bestimmt werden soll, wird eingegeben:f:=x->3*cos(x)-x;NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRjb3NHRiU2IzkkIiIkRjAhIiJGJUYlRiU=Eine Nullstelle mu\337 im Intervall [1,2] liegen, da die Funktion stetig ist und an den Intervallgrenzen 1 und 2 verschiedene Vorzeichen annimmt:evalf(f(1)); evalf(f(2));NiMkIio9cCE0aSEiKg==NiMkISs1MFdbSyEiKg==Maple kann die Gleichung f(x)=0 numerisch l\366sen:(Beachte: Hier wurde das Intervall [1,2] f\374r die Suche einer L\366sung vorgegeben.)fsolve(f(x)=0,x,1..2);NiMkIitdNDdxNiEiKg==Nun wird die Iterationsformel f\374r das Newtonverfahren berechnet:f1:=diff(f(x),x);NiM+SSNmMUc2IiwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2I0kieEdGJSEiJCEiIiIiIg==newton:=x-f(x)/f1;NiM+SSduZXd0b25HNiIsJkkieEdGJSIiIiomLCYtSSRjb3NHNiRJKnByb3RlY3RlZEdGLkkoX3N5c2xpYkdGJTYjRiciIiRGJyEiIkYoLCYtSSRzaW5HRi1GMCEiJEYyRihGMkYyEs werden einige Iterationen mit dem Startwert 1 durchgef\374hrt:Digits:=15; x[0]:=1;x[1]:=evalf(subs(x=x[0],newton));x[2]:=evalf(subs(x=x[1],newton));x[3]:=evalf(subs(x=x[2],newton));x[4]:=evalf(subs(x=x[3],newton));NiM+SSdEaWdpdHNHNiIiIzo=NiM+JkkieEc2IjYjIiIhIiIiNiM+JkkieEc2IjYjIiIiJCIwSiMqZTl0aDwiISM5NiM+JkkieEc2IjYjIiIjJCIwXHU1ZUUsPCIhIzk=NiM+JkkieEc2IjYjIiIkJCIwYzIrJjQ3cTYhIzk=NiM+JkkieEc2IjYjIiIlJCIwai0rJjQ3cTYhIzk=Der Test ergibt, dass hier wirklich eine Nullstelle vorliegt:f(1.17012); Digits:=10:x:='x':NiMkIiotJEd1TiEjOQ==
<Text-field layout="Heading 1" style="_cstyle279"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2</Font></Text-field>Das Polynom wird definiert:p:=x->2*x^3+3*x^2+5;NiM+SSJwRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIjKiRGLkYwRi8iIiYiIiJGJUYlRiU=Die Taylorentwicklung an der Stelle x=0 bis zur dritten Ordnung wird ausgef\374hrt:taylor(p(x),x=0,4);NiMrKUkieEc2IiIiJiIiISIiJCIiI0YpRig=Die Taylorentwicklung an der Stelle x=1 bis zur dritten Ordnung wird ausgef\374hrt:taylor(p(x),x=1,4);NiMrKywmSSJ4RzYiIiIiISIiRiciIzUiIiEiIzdGJyIiKiIiI0YtIiIkDer folgende Schritt ist in Maple n\366tig, um die obige Partialsumme in ein Polynom umzuwandeln:convert(%,polynom);NiMsKiEiIyIiIkkieEc2IiIjNyokLCZGJkYlISIiRiUiIiMiIioqJEYqIiIkRiw=Wie man nun sieht, stimmt die Taylorentwicklung an x=1 mit dem Polynom \374berein:p(x)-simplify(%);NiMiIiE=
<Text-field layout="Heading 1" style="_cstyle281"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 3</Font></Text-field>f:=x->sin(x);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkkc2luRzYkSSpwcm90ZWN0ZWRHRi9JKF9zeXNsaWJHRiU2IzkkRiVGJUYltaylor(f(x),x=0,9);NiMrLUkieEc2IiIiIkYmIyEiIiIiJyIiJCNGJiIkPyIiIiYjRigiJVNdIiIoLUkiT0dJKnByb3RlY3RlZEdGMzYjRiYiIio=p:=convert(%,polynom);NiM+SSJwRzYiLCpJInhHRiUiIiIqJEYnIiIkIyEiIiIiJyokRiciIiYjRigiJD8iKiRGJyIiKCNGLCIlU10=
Funktionen mehrerer Ver\344nderlicher
<Text-field layout="Heading 1" style="_cstyle283"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 1</Font></Text-field>Eine Funktion in zwei Ver\344nderlichen wird definiert:f:=(x,y)->3*x^2+4*y^2-6;NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIjIiIkKiQ5JUYwIiIlISInIiIiRiVGJUYlEs wird nun y=1 gesetzt, nach x abgeleitet und diese Ableitung an der Stelle x=1 ausgewertet:z:=f(x,1);NiM+SSJ6RzYiLCYqJEkieEdGJSIiIyIiJCEiIyIiIg==zx:=diff(z,x);NiM+SSN6eEc2IiwkSSJ4R0YlIiInsubs(x=1,zx);NiMiIic=Es wird nun x=1 gesetzt, nach y abgeleitet und diese Ableitung an der Stelle y=1 ausgewertet:z:=f(1,y);NiM+SSJ6RzYiLCYhIiQiIiIqJEkieUdGJSIiIyIiJQ==zy:=diff(z,y);NiM+SSN6eUc2IiwkSSJ5R0YlIiIpsubs(y=1,zy);NiMiIik=
<Text-field layout="Heading 1" style="_cstyle286"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2, Teil a)</Font></Text-field>f:=(x,y)->x^2/y+y^2/x;NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYqJjkkIiIjOSUhIiIiIiIqJkYxRjBGL0YyRjNGJUYlRiU=diff(f(x,y),x);NiMsJiomSSJ4RzYiIiIiSSJ5R0YmISIiIiIjKiZGKEYqRiUhIiNGKQ==diff(f(x,y),y);NiMsJiomSSJ4RzYiIiIjSSJ5R0YmISIjISIiKiZGKCIiIkYlRipGJw==
<Text-field layout="Heading 1" style="_cstyle288"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2, Teil b)</Font></Text-field>f:=(x,y)->ln(tan(x/y));NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkjbG5HNiRJKnByb3RlY3RlZEdGMEkoX3N5c2xpYkdGJTYjLUkkdGFuR0YvNiMqJjkkIiIiOSUhIiJGJUYlRiU=diff(f(x,y),x);NiMqKCwmIiIiRiUqJC1JJHRhbkc2JEkqcHJvdGVjdGVkR0YqSShfc3lzbGliRzYiNiMqJkkieEdGLEYlSSJ5R0YsISIiIiIjRiVGJUYwRjFGJ0Yxdiff(f(x,y),y);NiMsJCoqLCYiIiJGJiokLUkkdGFuRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHNiI2IyomSSJ4R0YtRiZJInlHRi0hIiIiIiNGJkYmRjBGJkYxISIjRihGMkYysimplify(%,trig);NiMsJCoqLCYiIiJGJiokLUkkdGFuRzYkSSpwcm90ZWN0ZWRHRitJKF9zeXNsaWJHNiI2IyomSSJ4R0YtRiZJInlHRi0hIiIiIiNGJkYmRjBGJkYxISIjRihGMkYy
<Text-field layout="Heading 1" style="_cstyle290"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 2, Teil c)</Font></Text-field>f:=(x,y)->x^y;NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKTkkOSVGJUYlRiU=diff(f(x,y),x); NiMqKClJInhHNiJJInlHRiYiIiJGJ0YoRiUhIiI=diff(f(x,y),y);NiMqJilJInhHNiJJInlHRiYiIiItSSNsbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YmNiNGJUYo
<Text-field layout="Heading 1" style="_cstyle292"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 3</Font></Text-field>Die Funktion in zwei Ver\344nderlichen wird definiert:f:=(x,y)->sqrt(x-y);NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUklc3FydEc2JEkqcHJvdGVjdGVkR0YwSShfc3lzbGliR0YlNiMsJjkkIiIiOSUhIiJGJUYlRiU=Die Formel f\374r die Tangentialebene wird angegeben:t:=(x,y)->f(x0,y0)+D[1](f)(x0,y0)*(x-x0)+D[2](f)(x0,y0)*(y-y0);NiM+SSJ0RzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgtSSJmR0YlNiRJI3gwR0YlSSN5MEdGJSIiIiomLS0mSSJERzYkSSpwcm90ZWN0ZWRHRjpJKF9zeXNsaWJHRiU2I0YzNiNGL0YwRjMsJjkkRjNGMSEiIkYzRjMqJi0tJkY4NiMiIiNGPUYwRjMsJjklRjNGMkZARjNGM0YlRiVGJQ==Die Tangentialebene an der Stelle x0=1, y0=-3 wird berechnet:x0:=1; y0:=-3;NiM+SSN4MEc2IiIiIg==NiM+SSN5MEc2IiEiJA==t(x,y);NiMsKCIiIkYkSSJ4RzYiI0YkIiIlSSJ5R0YmIyEiIkYoFunktion und Tangentialebene werden gezeichnet:p1:=plot3d(f(x,y),x=-149..151,y=-153..147,axes=boxed):p2:=plot3d(t(x,y),x=-149..151,y=-153..147,axes=boxed):with(plots,display):Zun\344chst wird die Funktion gezeichnet:(Beachte: Die Funktion ist nur f\374r x>=y definiert.)display([p1]);LSUnUExPVDNERzYlLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRis3Ozc7JCIiI0YrSSp1bmRlZmluZWRHSSpwcm90ZWN0ZWRHRjhGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIistIz4/MSUhIiokIisrKysrP0Y8RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrMls7JlEmRjxGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2okXD9XJ0Y8RkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIitHI3AlW3RGPEZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOkt2YSIpRjxGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKzxXPikpKSlGPEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrTktjbCYqRjxGTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKy5SISk+NSEiKUZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrZDtOejVGVEZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrcDt5TjZGVEZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrRHhgKj0iRlRGWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2x0JzRDIkZURmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrIXpbLkgiRlRGaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOykzekwiRlRGXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK11fJFFRIkZURl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrJ28mR0c5RlRGYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrKCpRUnI5RlRGZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3Rjc3OyQiKyZmdUteIkZURmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGNzc7JCIrRnEtYTpGVEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3NzskIitYeHQkZiJGVEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGNzc7JCIrc0ZbSztGVEZhcEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3Rjc3OyQiKzQkSC5uIkZURmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3Rjc3OyQiKzNyTDI8RlRGZ3BGZHBGYXBGXnBGW3BGaG9GZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9Rjc3OyQiK3gmZk51IkZURmpwRmdwRmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPS0lK0FYRVNMQUJFTFNHNiVRIng2IlEieUZjcVEhRmNxLSUqQVhFU1NUWUxFRzYjJSRCT1hHNun wird die Tangentialebene gezeichnet:display([p2]);LSUnUExPVDNERzYlLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRitYLDYiRjRGNFtnbCchJSIhISNcYm0iOiI6NDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMEMwNTBCMDAwMDAwMDAwMDBDMDUxNzgwMDAwMDAwMDAwQzA1MjQwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDBDMDRGRDAwMDAwMDAwMDAwQzA1MEIwMDAwMDAwMDAwMEMwNTE3ODAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDBDMDUwQjAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMDQwNTFCMDAwMDAwMDAwMDA0MDUwRTgwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDA0MDUyNzgwMDAwMDAwMDAwNDA1MUIwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwNDA1MzQwMDAwMDAwMDAwMDQwNTI3ODAwMDAwMDAwMDA0MDUxQjAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMC0lK0FYRVNMQUJFTFNHNiVRInhGNFEieUY0USFGNC0lKkFYRVNTVFlMRUc2IyUkQk9YRw==Nun werden Funktion und Tangentialebene gemeinsam gezeichnet:display([p1,p2]);LSUnUExPVDNERzYmLSUlR1JJREc2JTskISRcIiIiISQiJF4iRis7JCEkYCJGKyQiJFoiRis3Ozc7JCIiI0YrSSp1bmRlZmluZWRHSSpwcm90ZWN0ZWRHRjhGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIistIz4/MSUhIiokIisrKysrP0Y8RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrMls7JlEmRjxGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2okXD9XJ0Y8RkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3NzskIitHI3AlW3RGPEZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOkt2YSIpRjxGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKzxXPikpKSlGPEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrTktjbCYqRjxGTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiKy5SISk+NSEiKUZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrZDtOejVGVEZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrcDt5TjZGVEZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrRHhgKj0iRlRGWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK2x0JzRDIkZURmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrIXpbLkgiRlRGaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrOykzekwiRlRGXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGN0Y3Rjc3OyQiK11fJFFRIkZURl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrJ28mR0c5RlRGYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3RjdGNzc7JCIrKCpRUnI5RlRGZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9RjdGN0Y3RjdGN0Y3Rjc3OyQiKyZmdUteIkZURmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3RjdGN0Y3RjdGNzc7JCIrRnEtYTpGVEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGN0Y3NzskIitYeHQkZiJGVEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3RjdGNzc7JCIrc0ZbSztGVEZhcEZecEZbcEZob0Zlb0Zib0Zfb0Zcb0ZpbkZmbkZZRlZGUkZPRkxGSUZGRkNGQEY6Rj1GN0Y3Rjc3OyQiKzQkSC5uIkZURmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPUY3Rjc3OyQiKzNyTDI8RlRGZ3BGZHBGYXBGXnBGW3BGaG9GZW9GYm9GX29GXG9GaW5GZm5GWUZWRlJGT0ZMRklGRkZDRkBGOkY9Rjc3OyQiK3gmZk51IkZURmpwRmdwRmRwRmFwRl5wRltwRmhvRmVvRmJvRl9vRlxvRmluRmZuRllGVkZSRk9GTEZJRkZGQ0ZARjpGPS1GJjYlRihGLlgsNiJGYnFGYnFbZ2wnISUiISEjXGJtIjoiOjQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDBDMDUwQjAwMDAwMDAwMDAwQzA1MTc4MDAwMDAwMDAwMEMwNTI0MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwQzA0RkQwMDAwMDAwMDAwMEMwNTBCMDAwMDAwMDAwMDBDMDUxNzgwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMEMwNEU0MDAwMDAwMDAwMDBDMDRGRDAwMDAwMDAwMDAwQzA1MEIwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDBDMDRDQjAwMDAwMDAwMDAwQzA0RTQwMDAwMDAwMDAwMEMwNEZEMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwQzA0QjIwMDAwMDAwMDAwMEMwNENCMDAwMDAwMDAwMDBDMDRFNDAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMEMwNDk5MDAwMDAwMDAwMDBDMDRCMjAwMDAwMDAwMDAwQzA0Q0IwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDBDMDQ4MDAwMDAwMDAwMDAwQzA0OTkwMDAwMDAwMDAwMEMwNEIyMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwQzA0NjcwMDAwMDAwMDAwMEMwNDgwMDAwMDAwMDAwMDBDMDQ5OTAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMEMwNDRFMDAwMDAwMDAwMDBDMDQ2NzAwMDAwMDAwMDAwQzA0ODAwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDBDMDQzNTAwMDAwMDAwMDAwQzA0NEUwMDAwMDAwMDAwMEMwNDY3MDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwQzA0MUMwMDAwMDAwMDAwMEMwNDM1MDAwMDAwMDAwMDBDMDQ0RTAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMEMwNDAzMDAwMDAwMDAwMDBDMDQxQzAwMDAwMDAwMDAwQzA0MzUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDBDMDNENDAwMDAwMDAwMDAwQzA0MDMwMDAwMDAwMDAwMEMwNDFDMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwQzAzQTIwMDAwMDAwMDAwMEMwM0Q0MDAwMDAwMDAwMDBDMDQwMzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMEMwMzcwMDAwMDAwMDAwMDBDMDNBMjAwMDAwMDAwMDAwQzAzRDQwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDBDMDMzRTAwMDAwMDAwMDAwQzAzNzAwMDAwMDAwMDAwMEMwM0EyMDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwQzAzMEMwMDAwMDAwMDAwMEMwMzNFMDAwMDAwMDAwMDBDMDM3MDAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMEMwMkI0MDAwMDAwMDAwMDBDMDMwQzAwMDAwMDAwMDAwQzAzM0UwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDBDMDI1MDAwMDAwMDAwMDAwQzAyQjQwMDAwMDAwMDAwMEMwMzBDMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwQzAxRDgwMDAwMDAwMDAwMEMwMjUwMDAwMDAwMDAwMDBDMDJCNDAwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMEMwMTEwMDAwMDAwMDAwMDBDMDFEODAwMDAwMDAwMDAwQzAyNTAwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDBCRkYyMDAwMDAwMDAwMDAwQzAxMTAwMDAwMDAwMDAwMEMwMUQ4MDAwMDAwMDAwMDA0MDUxQjAwMDAwMDAwMDAwNDA1MEU4MDAwMDAwMDAwMDQwNTAyMDAwMDAwMDAwMDA0MDRFQjAwMDAwMDAwMDAwNDA0RDIwMDAwMDAwMDAwMDQwNEI5MDAwMDAwMDAwMDA0MDRBMDAwMDAwMDAwMDAwNDA0ODcwMDAwMDAwMDAwMDQwNDZFMDAwMDAwMDAwMDA0MDQ1NTAwMDAwMDAwMDAwNDA0M0MwMDAwMDAwMDAwMDQwNDIzMDAwMDAwMDAwMDA0MDQwQTAwMDAwMDAwMDAwNDAzRTIwMDAwMDAwMDAwMDQwM0IwMDAwMDAwMDAwMDA0MDM3RTAwMDAwMDAwMDAwNDAzNEMwMDAwMDAwMDAwMDQwMzFBMDAwMDAwMDAwMDA0MDJEMDAwMDAwMDAwMDAwNDAyNkMwMDAwMDAwMDAwMDQwMjA4MDAwMDAwMDAwMDA0MDE0ODAwMDAwMDAwMDAwNDAwMDAwMDAwMDAwMDAwMEJGRjIwMDAwMDAwMDAwMDBDMDExMDAwMDAwMDAwMDAwNDA1Mjc4MDAwMDAwMDAwMDQwNTFCMDAwMDAwMDAwMDA0MDUwRTgwMDAwMDAwMDAwNDA1MDIwMDAwMDAwMDAwMDQwNEVCMDAwMDAwMDAwMDA0MDREMjAwMDAwMDAwMDAwNDA0QjkwMDAwMDAwMDAwMDQwNEEwMDAwMDAwMDAwMDA0MDQ4NzAwMDAwMDAwMDAwNDA0NkUwMDAwMDAwMDAwMDQwNDU1MDAwMDAwMDAwMDA0MDQzQzAwMDAwMDAwMDAwNDA0MjMwMDAwMDAwMDAwMDQwNDBBMDAwMDAwMDAwMDA0MDNFMjAwMDAwMDAwMDAwNDAzQjAwMDAwMDAwMDAwMDQwMzdFMDAwMDAwMDAwMDA0MDM0QzAwMDAwMDAwMDAwNDAzMUEwMDAwMDAwMDAwMDQwMkQwMDAwMDAwMDAwMDA0MDI2QzAwMDAwMDAwMDAwNDAyMDgwMDAwMDAwMDAwMDQwMTQ4MDAwMDAwMDAwMDA0MDAwMDAwMDAwMDAwMDAwQkZGMjAwMDAwMDAwMDAwMDQwNTM0MDAwMDAwMDAwMDA0MDUyNzgwMDAwMDAwMDAwNDA1MUIwMDAwMDAwMDAwMDQwNTBFODAwMDAwMDAwMDA0MDUwMjAwMDAwMDAwMDAwNDA0RUIwMDAwMDAwMDAwMDQwNEQyMDAwMDAwMDAwMDA0MDRCOTAwMDAwMDAwMDAwNDA0QTAwMDAwMDAwMDAwMDQwNDg3MDAwMDAwMDAwMDA0MDQ2RTAwMDAwMDAwMDAwNDA0NTUwMDAwMDAwMDAwMDQwNDNDMDAwMDAwMDAwMDA0MDQyMzAwMDAwMDAwMDAwNDA0MEEwMDAwMDAwMDAwMDQwM0UyMDAwMDAwMDAwMDA0MDNCMDAwMDAwMDAwMDAwNDAzN0UwMDAwMDAwMDAwMDQwMzRDMDAwMDAwMDAwMDA0MDMxQTAwMDAwMDAwMDAwNDAyRDAwMDAwMDAwMDAwMDQwMjZDMDAwMDAwMDAwMDA0MDIwODAwMDAwMDAwMDAwNDAxNDgwMDAwMDAwMDAwMDQwMDAwMDAwMDAwMDAwMDAtJStBWEVTTEFCRUxTRzYpUSJ4RmJxUSJ5RmJxUSFGYnEtJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM1JStIT1JJWk9OVEFMR0ZeckZeci0lKkFYRVNTVFlMRUc2IyUkQk9YRw==
<Text-field layout="Heading 1" style="_cstyle294"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 4</Font></Text-field>Die Funktion in zwei Ver\344nderlichen wird definiert:P:=(U,R)->U^2/R;NiM+SSJQRzYiZio2JEkiVUdGJUkiUkdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIzklISIiRiVGJUYlDie partiellen Ableitungen werden berechnet:PU:=D[1](P);NiM+SSNQVUc2ImYqNiRJIlVHRiVJIlJHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSwkKiY5JCIiIjklISIiIiIjRiVGJUYlPR:=D[2](P);NiM+SSNQUkc2ImYqNiRJIlVHRiVJIlJHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSwkKiY5JCIiIzklISIjISIiRiVGJUYlDie Formel f\374r die Fehlerrechnung wird eingegeben:dP:=PU*dU + PR*dR;NiM+SSNkUEc2IiwmKiZJI1BVR0YlIiIiSSNkVUdGJUYpRikqJkkjUFJHRiVGKUkjZFJHRiVGKUYpDie Formel f\374r die Fehlerrechnung wird ausgewertet:dU:=-10; dR:=-0.5;NiM+SSNkVUc2IiEjNQ==NiM+SSNkUkc2IiQhIiYhIiI=dP(220,10);NiMkISUhKT4hIiI=
<Text-field layout="Heading 1" style="_cstyle296"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 5</Font></Text-field>Die Funktion in zwei Ver\344nderlichen wird angegeben:f:=(x,y)->y*exp(x);NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JSIiIi1JJGV4cEc2JEkqcHJvdGVjdGVkR0YzSShfc3lzbGliR0YlNiM5JEYvRiVGJUYlwith(linalg):Warning, the protected names norm and trace have been redefined and unprotectedDer Gradient wird berechnet:grad(f(x,y),[x,y]);NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQqJkkieUdGKCIiIi1JJGV4cEdGJTYjSSJ4R0YoRi1GLg==Der Gradient an der Stelle (0,5) wird berechnet:subs({x=0,y=5},%);NiMtSSd2ZWN0b3JHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyQsJC1JJGV4cEdGJTYjIiIhIiImRiw=gradient:=simplify(%);NiM+SSlncmFkaWVudEc2Ii1JJ3ZlY3Rvckc2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliR0YlNiM3JCIiJiIiIg==Das Skalarprodukt mit dem Richtungsvektor wird berechnet:v:=[1/sqrt(2),1/sqrt(2)];NiM+SSJ2RzYiNyQsJCokIiIjIyIiIkYpRipGJw==dotprod(gradient,v);NiMsJCokIiIjIyIiIkYlIiIk
<Text-field layout="Heading 1" style="_cstyle298"><Font family="Times New Roman" foreground="[0,0,0]" italic="false" underline="false">Aufgabe 6, Teil a)</Font></Text-field>Die Funktion wird eingegeben:f:=(x,y)->ln(x^2+y^2+1);NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLUkjbG5HNiRJKnByb3RlY3RlZEdGMEkoX3N5c2xpYkdGJTYjLCgqJDkkIiIjIiIiKiQ5JUY2RjdGN0Y3RiVGJUYlDie ersten partiellen Ableitungen werden berechnet:fx:=diff(f(x,y),x);NiM+SSNmeEc2IiwkKiZJInhHRiUiIiIsKCokRigiIiNGKSokSSJ5R0YlRixGKUYpRikhIiJGLA==fy:=diff(f(x,y),y);NiM+SSNmeUc2IiwkKiZJInlHRiUiIiIsKCokSSJ4R0YlIiIjRikqJEYoRi1GKUYpRikhIiJGLQ==Die ersten partiellen Ableitungen werden gleich 0 gesetzt:solve({fx=0,fy=0},{x,y});NiM8JC9JInhHNiIiIiEvSSJ5R0YmRic=Die zweiten partiellen Ableitungen werden berechnet:fxx:=diff(fx,x);NiM+SSRmeHhHNiIsJiokLCgqJEkieEdGJSIiIyIiIiokSSJ5R0YlRitGLEYsRiwhIiJGKyomRipGK0YoISIjISIlfxy:=diff(fx,y);NiM+SSRmeHlHNiIsJCooSSJ4R0YlIiIiLCgqJEYoIiIjRikqJEkieUdGJUYsRilGKUYpISIjRi5GKSEiJQ==fyy:=diff(fy,y);NiM+SSRmeXlHNiIsJiokLCgqJEkieEdGJSIiIyIiIiokSSJ5R0YlRitGLEYsRiwhIiJGKyomRi5GK0YoISIjISIlDie Determinante der Hesse-Matrix wird an der gefundenen Stelle ausgewertet:subs({x=0,y=0},fxx*fyy-fxy^2);NiMiIiU=Analog wird fxx an der gefundenen Stelle ausgewertet:Es liegt ein lokales Minimum vor.subs({x=0,y=0},fxx);NiMiIiM=Maple ermittelt Minimum und Maximum (sowie die Stelle, an der sie angenommen werden) auch automatisch:(Beachte: Ein Maximum liegt nicht vor, ein Minimum wird an (0,0) angenommen.)maximize(f(x,y),location);NiRJKWluZmluaXR5R0kqcHJvdGVjdGVkR0YkPCM3JEklRkFJTEdGJEYjminimize(f(x,y),location);NiQiIiE8IzckSSVGQUlMR0kqcHJvdGVjdGVkR0YnRiM=
<Text-field layout="_pstyle256" style="_pstyle256">Aufgabe 6, Teil b)</Text-field>Die Funktion wird eingegeben:f:=(x,y)->x^5*y+x*y^5+x*y;NiM+SSJmRzYiZio2JEkieEdGJUkieUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJjkkIiImOSUiIiJGMiomRi9GMkYxRjBGMiomRi9GMkYxRjJGMkYlRiVGJQ==Die ersten partiellen Ableitungen werden berechnet:fx:=diff(f(x,y),x);NiM+SSNmeEc2IiwoKiZJInhHRiUiIiVJInlHRiUiIiIiIiYqJEYqRixGK0YqRis=fy:=diff(f(x,y),y);NiM+SSNmeUc2IiwoKiRJInhHRiUiIiYiIiIqJkYoRipJInlHRiUiIiVGKUYoRio=Die ersten partiellen Ableitungen werden gleich 0 gesetzt: fsolve({fx=0,fy=0},{x,y});NiM8JC9JInlHNiIkIiIhRigvSSJ4R0YmRic=Die zweiten partiellen Ableitungen werden berechnet:fxx:=diff(fx,x); fxy:=diff(fx,y); fyy:=diff(fy,y);NiM+SSRmeHhHNiIsJComSSJ4R0YlIiIkSSJ5R0YlIiIiIiM/NiM+SSRmeHlHNiIsKCokSSJ4R0YlIiIlIiImKiRJInlHRiVGKUYqIiIiRi0=NiM+SSRmeXlHNiIsJComSSJ4R0YlIiIiSSJ5R0YlIiIkIiM/Die Determinante der Hesse-Matrix wird an der ermittelten Stelle ausgewertet:Es liegt ein Sattelpunkt vor.subs({x=0,y=0},fxx*fyy-fxy^2);NiMhIiI=Die Funktionen maximize und minimize liefern hier kein Ergebnis, da ja kein Minimum oder Maximum vorliegt:maximize(f(x,y),location);NiRJKWluZmluaXR5R0kqcHJvdGVjdGVkR0YkPCc3JDwkL0kieUc2IkYjL0kieEdGKkYjRiM3JDwkL0YsIiIhRihGIzckPCQvRilGMEYrRiM3JDwkL0YpLUkpSU5URVJWQUxHRio2IzssJEYjISIiRjAvRixGO0YjNyQ8JC9GKUY7L0YsRjdGIw==minimize(f(x,y),location);NiQsJEkpaW5maW5pdHlHSSpwcm90ZWN0ZWRHRiUhIiI8KDckPCQvSSJ5RzYiRiQvSSJ4R0YsLUkpSU5URVJWQUxHRiw2IztGIyIiIUYjNyQ8JC9GK0YzL0YuRiNGIzckPCQvRi5GJC9GK0YvRiM3JDwkRipGN0YjNyQ8JEY6L0YrRiNGIzckPCQvRi5GM0ZARiM=