restart; Grundbegriffe Graphische Integration Mit Hilfe des student-Package kann man die Integration graphisch veranschaulichen: with(student): NiM3QEkiREc2JEkqcHJvdGVjdGVkR0YmSShfc3lzbGliRzYiSSVEaWZmR0YnSSpEb3VibGVpbnRHRihJJEludEdGJ0kmTGltaXRHRidJKExpbmVpbnRHRihJKFByb2R1Y3RHRidJJFN1bUdGJ0kqVHJpcGxlaW50R0YoSSpjaGFuZ2V2YXJHRihJL2NvbXBsZXRlc3F1YXJlR0YoSSlkaXN0YW5jZUdGKEknZXF1YXRlR0YoSSppbnRlZ3JhbmRHRihJKmludGVyY2VwdEdGKEkpaW50cGFydHNHRihJKGxlZnRib3hHRihJKGxlZnRzdW1HRihJKW1ha2Vwcm9jR0YoSSptaWRkbGVib3hHRihJKm1pZGRsZXN1bUdGKEkpbWlkcG9pbnRHRihJKHBvd3N1YnNHRihJKXJpZ2h0Ym94R0YoSSlyaWdodHN1bUdGKEksc2hvd3RhbmdlbnRHRihJKHNpbXBzb25HRihJJnNsb3BlR0YoSShzdW1tYW5kR0YoSSp0cmFwZXpvaWRHRig= leftbox(x^2,x=0..4); leftsum(x^2,x=0..4); evalf(%); LSUlUExPVEc2KS0lKVBPTFlHT05TRzYkNyY3JCQiIiFGK0YqRik3JCQiIiJGK0YqRiwtJSZDT0xPUkc2JiUkUkdCRyQiMXNDeT8hMyc+cSEjOyQiMSM9dDohemc+ISpGNUYzLUYmNiQ3JkYsNyRGLUYtNyQkIiIjRitGLTckRj1GKkYvLUYmNiQ3JkY/NyRGPSQiIiVGKzckJCIiJEYrRkQ3JEZHRipGLy1GJjYkNyZGSTckRkckIiIqRis3JEZERk43JEZERipGLy0lJ0NVUlZFU0c2JjdTRik3JCQiM0htbW1tOycpPSgpISM+JCIzJFElcEN3WyY9ZyghIz83JCQiM1JMTExlJzQwaiIhIz0kIjNtJEc9ZnVoJmVFRlk3JCQiM21tbW07Nm0kWyNGam4kIjNjOD5XVURkb2hGWTckJCIzZm1tbTt5WVVMRmpuJCIzT1ZfYTUiNHM2IkZqbjckJCIzJUhMTCRlRj4oPiVGam4kIjMzeDAxMEZraDxGam43JCQiM1FtbW0iPksnKilcRmpuJCIzJypIOyIzJUhrKlsjRmpuNyQkIjNQKioqKipcS2QsImVGam4kIjN5OV43OUd6dkxGam43JCQiMy1tbW0iZlgoZW1Gam4kIjNzRFNYJkcqKVFWJUZqbjckJCIzLioqKioqXFU3WV0oRmpuJCIzWE9rJVx3Pz5qJkZqbjckJCIzJ1FMTExWIXB1JClGam4kIjMwJ1s7YSlSYThxRmpuNyQkIjN4bW1tO2MwVCIqRmpuJCIzUUAkKnB5KCopZU4pRmpuNyQkIjMjKioqKioqKkgsUSs1ISM8JCIzdzspKVwvL3crNUZdcjckJCIzKSoqKioqKipcKjNxMyJGXXIkIjNhLSxRZCUpZSI9IkZdcjckJCIzKSoqKioqKipwPVxxNkZdciQiMyVvNE94QF4rUCJGXXI3JCQiM21tbTtmQklZN0ZdciQiMzEqUmsvZHBLYiJGXXI3JCQiM0dMTExqJFtrTCJGXXIkIjM/WGomeUElNCd5IkZdcjckJCIzP0xMTGBRIkdUIkZdciQiMzciZXFUKUgvJyo+Rl1yNyQkIjMhKioqKipcc11rLDpGXXIkIjMzSU53QnokXEQjRl1yNyQkIjM5TExMYGRGIWUiRl1yJCIzWUxLZGM5RihcI0ZdcjckJCIzMysrXXNnYW07Rl1yJCIzb3ZedzZlUHhGRl1yNyQkIjMvKytdPGVwWzxGXXIkIjNDJCo+OWlxJHowJEZdcjckJCIzUUxMTGUvVE09Rl1yJCIzNTVGa0g8MWxMRl1yNyQkIjNKTEwkZURCSiI+Rl1yJCIzZ0wuLCNmUyttJEZdcjckJCIzaW1tbVRjLSkqPkZdciQiMydbXGRaWTFAKlJGXXI3JCQiM01tbTtmYEAnMyNGXXIkIjMtLkgjW18lSF9WRl1yNyQkIjN5KioqKlxuWilIOyNGXXIkIjMpei1QVzUuJnlZRl1yNyQkIjNZbW1tSnkqZUMjRl1yJCIzRE1dR3FxMFddRl1yNyQkIjMnKSoqKioqKlJeYkpCRl1yJCIzOz4vJzNQXGhWJkZdcjckJCIzZioqKioqXDVhYFQjRl1yJCIzaVsuYV9hJFIkZUZdcjckJCIzbyoqKipcN1JWJ1wjRl1yJCIzKWUwIVt6QT1LaUZdcjckJCIzayoqKioqXEBma2UjRl1yJCIzRTklZTNGcigqbydGXXI3JCQiMy9MTExgNE5uRUZdciQiM0VTI1sjMzZ3OXJGXXI3JCQiMyMqKioqKioqXCxzYEZGXXIkIjMnPS07WG11SGUoRl1yNyQkIjNbbW07ek0pPiRHRl1yJCIzJHAkSEZFLzg/ISlGXXI3JCQiMyQqKioqKioqcGZhPEhGXXIkIjNtUksxKFt1P14pRl1yNyQkIjMjSExMZWdgISkqSEZdciQiM3dbLVhCYUspKSopRl1yNyQkIjN3KioqKlwjRzJBMyRGXXIkIjMlRy4nSEs8KysmKkZdcjckJCIzO0xMTCQpR1trSkZdciQiM2VrNCo9PiZSLDVGNTckJCIzIykqKioqXDd5aF1LRl1yJCIzUUdVSDs7bGM1RjU3JCQiM3htbW0nKWZkTExGXXIkIjMsayEpKWUpR0Y2NkY1NyQkIjNibW1tLEZUPU1GXXIkIjMlKSpmIiopUlhibzZGNTckJCIzRkxMJGUjcGEtTkZdciQiM1Nga3cnXCR5RTdGNTckJCIzISoqKioqKipSdiYpek5GXXIkIjMtJltwMStROkciRjU3JCQiM0lMTExHVVlvT0ZdciQiMyF5N2Mlekh3WDhGNTckJCIzX21tbTFeclpQRl1yJCIzT2FQMl9vYC85RjU3JCQiMzQrK11zSUBLUUZdciQiMzcqKVJJLmRlbzlGNTckJCIzNCsrXTIlKTM4UkZdciQiM2gpMyJcKTNFN2AiRjU3JEZEJCIjO0YrLSUmU1RZTEVHNiMlJUxJTkVHLSUqVEhJQ0tORVNTRzYjRj4tRjA2JkYyJCIjNSEiIiRGK0ZdXmxGXl5sLSUrQVhFU0xBQkVMU0c2JFEieDYiUSFGY15sLSUlVklFV0c2JDtGXl5sJCIjU0ZdXmw7JCEjSyEiIyQiMjErKysrKz9qIiEjOg== NiMtSSRTdW1HSShfc3lzbGliRzYiNiQqJEkiaUdGJiIiIy9GKTsiIiEiIiQ= NiMkIiM5IiIh rightbox(x^2,x=0..4); rightsum(x^2,x=0..4); evalf(%); LSUlUExPVEc2KS0lKVBPTFlHT05TRzYkNyY3JCQiIiFGK0YqNyRGKiQiIiJGKzckRi1GLTckRi1GKi0lJkNPTE9SRzYmJSRSR0JHJCIxc0N5PyEzJz5xISM7JCIxIz10OiF6Zz4hKkY3RjUtRiY2JDcmRjA3JEYtJCIiJUYrNyQkIiIjRitGPjckRkFGKkYxLUYmNiQ3JkZDNyRGQSQiIipGKzckJCIiJEYrRkg3JEZLRipGMS1GJjYkNyZGTTckRkskIiM7Ris3JEY+RlI3JEY+RipGMS0lJ0NVUlZFU0c2JjdTRik3JCQiM0htbW1tOycpPSgpISM+JCIzJFElcEN3WyY9ZyghIz83JCQiM1JMTExlJzQwaiIhIz0kIjNtJEc9ZnVoJmVFRmduNyQkIjNtbW1tOzZtJFsjRl5vJCIzYzg+V1VEZG9oRmduNyQkIjNmbW1tO3lZVUxGXm8kIjNPVl9hNSI0czYiRl5vNyQkIjMlSExMJGVGPig+JUZebyQiMzN4MDEwRmtoPEZebzckJCIzUW1tbSI+SycqKVxGXm8kIjMnKkg7IjMlSGsqWyNGXm83JCQiM1AqKioqKlxLZCwiZUZebyQiM3k5Xjc5R3p2TEZebzckJCIzLW1tbSJmWChlbUZebyQiM3NEU1gmRyopUVYlRl5vNyQkIjMuKioqKipcVTdZXShGXm8kIjNYT2slXHc/PmomRl5vNyQkIjMnUUxMTFYhcHUkKUZebyQiMzAnWzthKVJhOHFGXm83JCQiM3htbW07YzBUIipGXm8kIjNRQCQqcHkoKillTilGXm83JCQiMyMqKioqKioqSCxRKzUhIzwkIjN3OykpXC8vdys1RmFyNyQkIjMpKioqKioqKlwqM3EzIkZhciQiM2EtLFFkJSllIj0iRmFyNyQkIjMpKioqKioqKnA9XHE2RmFyJCIzJW80T3hAXitQIkZhcjckJCIzbW1tO2ZCSVk3RmFyJCIzMSpSay9kcEtiIkZhcjckJCIzR0xMTGokW2tMIkZhciQiMz9YaiZ5QSU0J3kiRmFyNyQkIjM/TExMYFEiR1QiRmFyJCIzNyJlcVQpSC8nKj5GYXI3JCQiMyEqKioqKlxzXWssOkZhciQiMzNJTndCeiRcRCNGYXI3JCQiMzlMTExgZEYhZSJGYXIkIjNZTEtkYzlGKFwjRmFyNyQkIjMzKytdc2dhbTtGYXIkIjNvdl53NmVQeEZGYXI3JCQiMy8rK108ZXBbPEZhciQiM0MkKj45aXEkejAkRmFyNyQkIjNRTExMZS9UTT1GYXIkIjM1NUZrSDwxbExGYXI3JCQiM0pMTCRlREJKIj5GYXIkIjNnTC4sI2ZTK20kRmFyNyQkIjNpbW1tVGMtKSo+RmFyJCIzJ1tcZFpZMUAqUkZhcjckJCIzTW1tO2ZgQCczI0ZhciQiMy0uSCNbXyVIX1ZGYXI3JCQiM3kqKioqXG5aKUg7I0ZhciQiMyl6LVBXNS4meVlGYXI3JCQiM1ltbW1KeSplQyNGYXIkIjNETV1HcXEwV11GYXI3JCQiMycpKioqKioqUl5iSkJGYXIkIjM7Pi8nM1BcaFYmRmFyNyQkIjNmKioqKipcNWFgVCNGYXIkIjNpWy5hX2EkUiRlRmFyNyQkIjNvKioqKlw3UlYnXCNGYXIkIjMpZTAhW3pBPUtpRmFyNyQkIjNrKioqKipcQGZrZSNGYXIkIjNFOSVlM0ZyKCpvJ0ZhcjckJCIzL0xMTGA0Tm5FRmFyJCIzRVMjWyMzNnc5ckZhcjckJCIzIyoqKioqKipcLHNgRkZhciQiMyc9LTtYbXVIZShGYXI3JCQiM1ttbTt6TSk+JEdGYXIkIjMkcCRIRkUvOD8hKUZhcjckJCIzJCoqKioqKipwZmE8SEZhciQiM21SSzEoW3U/XilGYXI3JCQiMyNITExlZ2AhKSpIRmFyJCIzd1stWEJhSykpKilGYXI3JCQiM3cqKioqXCNHMkEzJEZhciQiMyVHLidISzwrKyYqRmFyNyQkIjM7TExMJClHW2tKRmFyJCIzZWs0Kj0+JlIsNUY3NyQkIjMjKSoqKipcN3loXUtGYXIkIjNRR1VIOztsYzVGNzckJCIzeG1tbScpZmRMTEZhciQiMyxrISkpZSlHRjY2Rjc3JCQiM2JtbW0sRlQ9TUZhciQiMyUpKmYiKilSWGJvNkY3NyQkIjNGTEwkZSNwYS1ORmFyJCIzU2BrdydcJHlFN0Y3NyQkIjMhKioqKioqKlJ2Jil6TkZhciQiMy0mW3AxK1E6RyJGNzckJCIzSUxMTEdVWW9PRmFyJCIzIXk3YyV6SHdYOEY3NyQkIjNfbW1tMV5yWlBGYXIkIjNPYVAyX29gLzlGNzckJCIzNCsrXXNJQEtRRmFyJCIzNyopUkkuZGVvOUY3NyQkIjM0KytdMiUpMzhSRmFyJCIzaCkzIlwpM0U3YCJGN0ZULSUmU1RZTEVHNiMlJUxJTkVHLSUqVEhJQ0tORVNTRzYjRkItRjI2JkY0JCIjNSEiIiRGK0ZeXmxGX15sLSUrQVhFU0xBQkVMU0c2JFEieDYiUSFGZF5sLSUlVklFV0c2JDtGX15sJCIjU0ZeXmw7JCEjSyEiIyQiMjErKysrKz9qIiEjOg== NiMtSSRTdW1HSShfc3lzbGliRzYiNiQqJEkiaUdGJiIiIy9GKTsiIiIiIiU= NiMkIiNJIiIh middlebox(x^2,x=0..4); middlesum(x^2,x=0..4); evalf(%); LSUlUExPVEc2KS0lKVBPTFlHT05TRzYkNyY3JCQiIiFGK0YqNyRGKiQiKysrKytEISM1NyQkIiIiRitGLTckRjFGKi0lJkNPTE9SRzYmJSRSR0JHJCIxc0N5PyEzJz5xISM7JCIxIz10OiF6Zz4hKkY6RjgtRiY2JDcmRjM3JEYxJCIrKysrXUEhIio3JCQiIiNGK0ZBNyRGRUYqRjQtRiY2JDcmRkc3JEZFJCIrKysrXWlGQzckJCIiJEYrRkw3JEZPRipGNC1GJjYkNyZGUTckRk8kIisrKytENyEiKTckJCIiJUYrRlY3JEZaRipGNC0lJ0NVUlZFU0c2JjdTRik3JCQiM0htbW1tOycpPSgpISM+JCIzJFElcEN3WyY9ZyghIz83JCQiM1JMTExlJzQwaiIhIz0kIjNtJEc9ZnVoJmVFRl5vNyQkIjNtbW1tOzZtJFsjRmVvJCIzYzg+V1VEZG9oRl5vNyQkIjNmbW1tO3lZVUxGZW8kIjNPVl9hNSI0czYiRmVvNyQkIjMlSExMJGVGPig+JUZlbyQiMzN4MDEwRmtoPEZlbzckJCIzUW1tbSI+SycqKVxGZW8kIjMnKkg7IjMlSGsqWyNGZW83JCQiM1AqKioqKlxLZCwiZUZlbyQiM3k5Xjc5R3p2TEZlbzckJCIzLW1tbSJmWChlbUZlbyQiM3NEU1gmRyopUVYlRmVvNyQkIjMuKioqKipcVTdZXShGZW8kIjNYT2slXHc/PmomRmVvNyQkIjMnUUxMTFYhcHUkKUZlbyQiMzAnWzthKVJhOHFGZW83JCQiM3htbW07YzBUIipGZW8kIjNRQCQqcHkoKillTilGZW83JCQiMyMqKioqKioqSCxRKzUhIzwkIjN3OykpXC8vdys1RmhyNyQkIjMpKioqKioqKlwqM3EzIkZociQiM2EtLFFkJSllIj0iRmhyNyQkIjMpKioqKioqKnA9XHE2RmhyJCIzJW80T3hAXitQIkZocjckJCIzbW1tO2ZCSVk3RmhyJCIzMSpSay9kcEtiIkZocjckJCIzR0xMTGokW2tMIkZociQiMz9YaiZ5QSU0J3kiRmhyNyQkIjM/TExMYFEiR1QiRmhyJCIzNyJlcVQpSC8nKj5GaHI3JCQiMyEqKioqKlxzXWssOkZociQiMzNJTndCeiRcRCNGaHI3JCQiMzlMTExgZEYhZSJGaHIkIjNZTEtkYzlGKFwjRmhyNyQkIjMzKytdc2dhbTtGaHIkIjNvdl53NmVQeEZGaHI3JCQiMy8rK108ZXBbPEZociQiM0MkKj45aXEkejAkRmhyNyQkIjNRTExMZS9UTT1GaHIkIjM1NUZrSDwxbExGaHI3JCQiM0pMTCRlREJKIj5GaHIkIjNnTC4sI2ZTK20kRmhyNyQkIjNpbW1tVGMtKSo+RmhyJCIzJ1tcZFpZMUAqUkZocjckJCIzTW1tO2ZgQCczI0ZociQiMy0uSCNbXyVIX1ZGaHI3JCQiM3kqKioqXG5aKUg7I0ZociQiMyl6LVBXNS4meVlGaHI3JCQiM1ltbW1KeSplQyNGaHIkIjNETV1HcXEwV11GaHI3JCQiMycpKioqKioqUl5iSkJGaHIkIjM7Pi8nM1BcaFYmRmhyNyQkIjNmKioqKipcNWFgVCNGaHIkIjNpWy5hX2EkUiRlRmhyNyQkIjNvKioqKlw3UlYnXCNGaHIkIjMpZTAhW3pBPUtpRmhyNyQkIjNrKioqKipcQGZrZSNGaHIkIjNFOSVlM0ZyKCpvJ0ZocjckJCIzL0xMTGA0Tm5FRmhyJCIzRVMjWyMzNnc5ckZocjckJCIzIyoqKioqKipcLHNgRkZociQiMyc9LTtYbXVIZShGaHI3JCQiM1ttbTt6TSk+JEdGaHIkIjMkcCRIRkUvOD8hKUZocjckJCIzJCoqKioqKipwZmE8SEZociQiM21SSzEoW3U/XilGaHI3JCQiMyNITExlZ2AhKSpIRmhyJCIzd1stWEJhSykpKilGaHI3JCQiM3cqKioqXCNHMkEzJEZociQiMyVHLidISzwrKyYqRmhyNyQkIjM7TExMJClHW2tKRmhyJCIzZWs0Kj0+JlIsNUY6NyQkIjMjKSoqKipcN3loXUtGaHIkIjNRR1VIOztsYzVGOjckJCIzeG1tbScpZmRMTEZociQiMyxrISkpZSlHRjY2Rjo3JCQiM2JtbW0sRlQ9TUZociQiMyUpKmYiKilSWGJvNkY6NyQkIjNGTEwkZSNwYS1ORmhyJCIzU2BrdydcJHlFN0Y6NyQkIjMhKioqKioqKlJ2Jil6TkZociQiMy0mW3AxK1E6RyJGOjckJCIzSUxMTEdVWW9PRmhyJCIzIXk3YyV6SHdYOEY6NyQkIjNfbW1tMV5yWlBGaHIkIjNPYVAyX29gLzlGOjckJCIzNCsrXXNJQEtRRmhyJCIzNyopUkkuZGVvOUY6NyQkIjM0KytdMiUpMzhSRmhyJCIzaCkzIlwpM0U3YCJGOjckRlokIiM7RistJSZTVFlMRUc2IyUlTElORUctJSpUSElDS05FU1NHNiNGRi1GNTYmRjckIiM1ISIiJEYrRmhebEZpXmwtJStBWEVTTEFCRUxTRzYkUSJ4NiJRIUZeX2wtJSVWSUVXRzYkO0ZpXmwkIiNTRmhebDskISNLISIjJCIyMSsrKysrP2oiISM6 NiMtSSRTdW1HSShfc3lzbGliRzYiNiQqJCwmSSJpR0YmIiIiI0YrIiIjRitGLS9GKjsiIiEiIiQ= NiMkIisrKysrQCEiKQ== Nun wird die Unterteilung feiner gew\344hlt: middlebox(x^2,x=0..4,10); middlesum(x^2,x=0..4,10); evalf(%); LSUlUExPVEc2Ly0lJ0NVUlZFU0c2JjdTNyQkIiIhRitGKjckJCIzSG1tbW07Jyk9KCkhIz4kIjMkUSVwQ3dbJj1nKCEjPzckJCIzUkxMTGUnNDBqIiEjPSQiM20kRz1mdWgmZUVGLzckJCIzbW1tbTs2bSRbI0Y2JCIzYzg+V1VEZG9oRi83JCQiM2ZtbW07eVlVTEY2JCIzT1ZfYTUiNHM2IkY2NyQkIjMlSExMJGVGPig+JUY2JCIzM3gwMTBGa2g8RjY3JCQiM1FtbW0iPksnKilcRjYkIjMnKkg7IjMlSGsqWyNGNjckJCIzUCoqKioqXEtkLCJlRjYkIjN5OV43OUd6dkxGNjckJCIzLW1tbSJmWChlbUY2JCIzc0RTWCZHKilRViVGNjckJCIzLioqKioqXFU3WV0oRjYkIjNYT2slXHc/PmomRjY3JCQiMydRTExMViFwdSQpRjYkIjMwJ1s7YSlSYThxRjY3JCQiM3htbW07YzBUIipGNiQiM1FAJCpweSgqKWVOKUY2NyQkIjMjKioqKioqKkgsUSs1ISM8JCIzdzspKVwvL3crNUZjbzckJCIzKSoqKioqKipcKjNxMyJGY28kIjNhLSxRZCUpZSI9IkZjbzckJCIzKSoqKioqKipwPVxxNkZjbyQiMyVvNE94QF4rUCJGY283JCQiM21tbTtmQklZN0ZjbyQiMzEqUmsvZHBLYiJGY283JCQiM0dMTExqJFtrTCJGY28kIjM/WGomeUElNCd5IkZjbzckJCIzP0xMTGBRIkdUIkZjbyQiMzciZXFUKUgvJyo+RmNvNyQkIjMhKioqKipcc11rLDpGY28kIjMzSU53QnokXEQjRmNvNyQkIjM5TExMYGRGIWUiRmNvJCIzWUxLZGM5RihcI0ZjbzckJCIzMysrXXNnYW07RmNvJCIzb3ZedzZlUHhGRmNvNyQkIjMvKytdPGVwWzxGY28kIjNDJCo+OWlxJHowJEZjbzckJCIzUUxMTGUvVE09RmNvJCIzNTVGa0g8MWxMRmNvNyQkIjNKTEwkZURCSiI+RmNvJCIzZ0wuLCNmUyttJEZjbzckJCIzaW1tbVRjLSkqPkZjbyQiMydbXGRaWTFAKlJGY283JCQiM01tbTtmYEAnMyNGY28kIjMtLkgjW18lSF9WRmNvNyQkIjN5KioqKlxuWilIOyNGY28kIjMpei1QVzUuJnlZRmNvNyQkIjNZbW1tSnkqZUMjRmNvJCIzRE1dR3FxMFddRmNvNyQkIjMnKSoqKioqKlJeYkpCRmNvJCIzOz4vJzNQXGhWJkZjbzckJCIzZioqKioqXDVhYFQjRmNvJCIzaVsuYV9hJFIkZUZjbzckJCIzbyoqKipcN1JWJ1wjRmNvJCIzKWUwIVt6QT1LaUZjbzckJCIzayoqKioqXEBma2UjRmNvJCIzRTklZTNGcigqbydGY283JCQiMy9MTExgNE5uRUZjbyQiM0VTI1sjMzZ3OXJGY283JCQiMyMqKioqKioqXCxzYEZGY28kIjMnPS07WG11SGUoRmNvNyQkIjNbbW07ek0pPiRHRmNvJCIzJHAkSEZFLzg/ISlGY283JCQiMyQqKioqKioqcGZhPEhGY28kIjNtUksxKFt1P14pRmNvNyQkIjMjSExMZWdgISkqSEZjbyQiM3dbLVhCYUspKSopRmNvNyQkIjN3KioqKlwjRzJBMyRGY28kIjMlRy4nSEs8KysmKkZjbzckJCIzO0xMTCQpR1trSkZjbyQiM2VrNCo9PiZSLDUhIzs3JCQiMyMpKioqKlw3eWhdS0ZjbyQiM1FHVUg7O2xjNUZodzckJCIzeG1tbScpZmRMTEZjbyQiMyxrISkpZSlHRjY2Rmh3NyQkIjNibW1tLEZUPU1GY28kIjMlKSpmIiopUlhibzZGaHc3JCQiM0ZMTCRlI3BhLU5GY28kIjNTYGt3J1wkeUU3Rmh3NyQkIjMhKioqKioqKlJ2Jil6TkZjbyQiMy0mW3AxK1E6RyJGaHc3JCQiM0lMTExHVVlvT0ZjbyQiMyF5N2Mlekh3WDhGaHc3JCQiM19tbW0xXnJaUEZjbyQiM09hUDJfb2AvOUZodzckJCIzNCsrXXNJQEtRRmNvJCIzNyopUkkuZGVvOUZodzckJCIzNCsrXTIlKTM4UkZjbyQiM2gpMyJcKTNFN2AiRmh3NyQkIiIlRiskIiM7RistJSZTVFlMRUc2IyUlTElORUctJSpUSElDS05FU1NHNiMiIiMtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRitGaVtsRmpbbC0lKVBPTFlHT05TRzYkNyZGKTckRiokIisrKysrUyEjNjckJEZhXGwhIzVGYFxsNyRGZFxsRiotRmRbbDYmRmZbbCQiMXNDeT8hMyc+cUZodyQiMSM9dDohemc+ISpGaHdGaVxsLUZcXGw2JDcmRmZcbDckRmRcbCQiKysrKytPRmVcbDckJCIrKysrKyEpRmVcbEZhXWw3JEZkXWxGKkZnXGwtRlxcbDYkNyZGZl1sNyRGZF1sJCIiIkYrNyQkIisrKysrNyEiKkZbXmw3JEZeXmxGKkZnXGwtRlxcbDYkNyZGYV5sNyRGXl5sJCIrKysrZz5GYF5sNyQkIisrKysrO0ZgXmxGZl5sNyRGaV5sRipGZ1xsLUZcXGw2JDcmRltfbDckRmlebCQiKysrK1NLRmBebDckJEZiW2xGK0ZgX2w3JEZjX2xGKkZnXGwtRlxcbDYkNyZGZF9sNyRGY19sJCIrKysrU1tGYF5sNyQkIisrKysrQ0ZgXmxGaV9sNyRGXGBsRipGZ1xsLUZcXGw2JDcmRl5gbDckRlxgbCQiKysrK2duRmBebDckJCIrKysrK0dGYF5sRmNgbDckRmZgbEYqRmdcbC1GXFxsNiQ3JkZoYGw3JEZmYGwkIiIqRis3JCQiKysrKytLRmBebEZdYWw3JEZgYWxGKkZnXGwtRlxcbDYkNyZGYmFsNyRGYGFsJCIrKysrYzYhIik3JCRGYl1sRmBebEZnYWw3JEZbYmxGKkZnXGwtRlxcbDYkNyZGXGJsNyRGW2JsJCIrKysrVzlGaWFsNyRGZ3pGYWJsNyRGZ3pGKkZnXGwtJStBWEVTTEFCRUxTRzYkUSJ4NiJRIUZpYmwtJSVWSUVXRzYkO0ZqW2wkIiNTRmlbbDskISNLISIjJCIyMSsrKysrP2oiISM6 NiMsJC1JJFN1bUdJKF9zeXNsaWJHNiI2JCokLCZJImlHRicjIiIjIiImIyIiIkYuRjBGLS9GKzsiIiEiIipGLA== NiMkIisrKytHQCEiKQ== Bei noch feinerer Unterteilung: middlebox(x^2,x=0..4,100); middlesum(x^2,x=0..4,100); evalf(%); LSUlUExPVEc2Y3EtJSdDVVJWRVNHNiY3UzckJCIiIUYrRio3JCQiM0htbW1tOycpPSgpISM+JCIzJFElcEN3WyY9ZyghIz83JCQiM1JMTExlJzQwaiIhIz0kIjNtJEc9ZnVoJmVFRi83JCQiM21tbW07Nm0kWyNGNiQiM2M4PldVRGRvaEYvNyQkIjNmbW1tO3lZVUxGNiQiM09WX2E1IjRzNiJGNjckJCIzJUhMTCRlRj4oPiVGNiQiMzN4MDEwRmtoPEY2NyQkIjNRbW1tIj5LJyopXEY2JCIzJypIOyIzJUhrKlsjRjY3JCQiM1AqKioqKlxLZCwiZUY2JCIzeTleNzlHenZMRjY3JCQiMy1tbW0iZlgoZW1GNiQiM3NEU1gmRyopUVYlRjY3JCQiMy4qKioqKlxVN1ldKEY2JCIzWE9rJVx3Pz5qJkY2NyQkIjMnUUxMTFYhcHUkKUY2JCIzMCdbO2EpUmE4cUY2NyQkIjN4bW1tO2MwVCIqRjYkIjNRQCQqcHkoKillTilGNjckJCIzIyoqKioqKipILFErNSEjPCQiM3c7KSlcLy93KzVGY283JCQiMykqKioqKioqXCozcTMiRmNvJCIzYS0sUWQlKWUiPSJGY283JCQiMykqKioqKioqcD1ccTZGY28kIjMlbzRPeEBeK1AiRmNvNyQkIjNtbW07ZkJJWTdGY28kIjMxKlJrL2RwS2IiRmNvNyQkIjNHTExMaiRba0wiRmNvJCIzP1hqJnlBJTQneSJGY283JCQiMz9MTExgUSJHVCJGY28kIjM3ImVxVClILycqPkZjbzckJCIzISoqKioqXHNdayw6RmNvJCIzM0lOd0J6JFxEI0ZjbzckJCIzOUxMTGBkRiFlIkZjbyQiM1lMS2RjOUYoXCNGY283JCQiMzMrK11zZ2FtO0ZjbyQiM292Xnc2ZVB4RkZjbzckJCIzLysrXTxlcFs8RmNvJCIzQyQqPjlpcSR6MCRGY283JCQiM1FMTExlL1RNPUZjbyQiMzU1RmtIPDFsTEZjbzckJCIzSkxMJGVEQkoiPkZjbyQiM2dMLiwjZlMrbSRGY283JCQiM2ltbW1UYy0pKj5GY28kIjMnW1xkWlkxQCpSRmNvNyQkIjNNbW07ZmBAJzMjRmNvJCIzLS5II1tfJUhfVkZjbzckJCIzeSoqKipcblopSDsjRmNvJCIzKXotUFc1LiZ5WUZjbzckJCIzWW1tbUp5KmVDI0ZjbyQiM0RNXUdxcTBXXUZjbzckJCIzJykqKioqKipSXmJKQkZjbyQiMzs+LyczUFxoViZGY283JCQiM2YqKioqKlw1YWBUI0ZjbyQiM2lbLmFfYSRSJGVGY283JCQiM28qKioqXDdSVidcI0ZjbyQiMyllMCFbekE9S2lGY283JCQiM2sqKioqKlxAZmtlI0ZjbyQiM0U5JWUzRnIoKm8nRmNvNyQkIjMvTExMYDRObkVGY28kIjNFUyNbIzM2dzlyRmNvNyQkIjMjKioqKioqKlwsc2BGRmNvJCIzJz0tO1htdUhlKEZjbzckJCIzW21tO3pNKT4kR0ZjbyQiMyRwJEhGRS84PyEpRmNvNyQkIjMkKioqKioqKnBmYTxIRmNvJCIzbVJLMShbdT9eKUZjbzckJCIzI0hMTGVnYCEpKkhGY28kIjN3Wy1YQmFLKSkqKUZjbzckJCIzdyoqKipcI0cyQTMkRmNvJCIzJUcuJ0hLPCsrJipGY283JCQiMztMTEwkKUdba0pGY28kIjNlazQqPT4mUiw1ISM7NyQkIjMjKSoqKipcN3loXUtGY28kIjNRR1VIOztsYzVGaHc3JCQiM3htbW0nKWZkTExGY28kIjMsayEpKWUpR0Y2NkZodzckJCIzYm1tbSxGVD1NRmNvJCIzJSkqZiIqKVJYYm82Rmh3NyQkIjNGTEwkZSNwYS1ORmNvJCIzU2BrdydcJHlFN0ZodzckJCIzISoqKioqKipSdiYpek5GY28kIjMtJltwMStROkciRmh3NyQkIjNJTExMR1VZb09GY28kIjMheTdjJXpId1g4Rmh3NyQkIjNfbW1tMV5yWlBGY28kIjNPYVAyX29gLzlGaHc3JCQiMzQrK11zSUBLUUZjbyQiMzcqKVJJLmRlbzlGaHc3JCQiMzQrK10yJSkzOFJGY28kIjNoKTMiXCkzRTdgIkZodzckJCIiJUYrJCIjO0YrLSUmU1RZTEVHNiMlJUxJTkVHLSUqVEhJQ0tORVNTRzYjIiIjLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJEYrRmlbbEZqW2wtJSlQT0xZR09OU0c2JDcmRik3JEYqJCIrKysrK1MhIzg3JCRGYVxsISM2RmBcbDckRmRcbEYqLUZkW2w2JkZmW2wkIjFzQ3k/ITMnPnFGaHckIjEjPXQ6IXpnPiEqRmh3RmlcbC1GXFxsNiQ3JkZmXGw3JEZkXGwkIisrKysrTyEjNzckJCIrKysrKyEpRmVcbEZhXWw3JEZlXWxGKkZnXGwtRlxcbDYkNyZGZ11sNyRGZV1sJCIrKysrKzVGZVxsNyQkIisrKysrNyEjNUZcXmw3JEZfXmxGKkZnXGwtRlxcbDYkNyZGYl5sNyRGX15sJCIrKysrZz5GZVxsNyQkIisrKysrO0ZhXmxGZ15sNyRGal5sRipGZ1xsLUZcXGw2JDcmRlxfbDckRmpebCQiKysrK1NLRmVcbDckJCIrKysrKz9GYV5sRmFfbDckRmRfbEYqRmdcbC1GXFxsNiQ3JkZmX2w3JEZkX2wkIisrKytTW0ZlXGw3JCQiKysrKytDRmFebEZbYGw3JEZeYGxGKkZnXGwtRlxcbDYkNyZGYGBsNyRGXmBsJCIrKysrZ25GZVxsNyQkIisrKysrR0ZhXmxGZWBsNyRGaGBsRipGZ1xsLUZcXGw2JDcmRmpgbDckRmhgbCQiKysrKyshKkZlXGw3JCQiKysrKytLRmFebEZfYWw3JEZiYWxGKkZnXGwtRlxcbDYkNyZGZGFsNyRGYmFsJCIrKysrYzZGYV5sNyQkRmJdbEZhXmxGaWFsNyRGXGJsRipGZ1xsLUZcXGw2JDcmRl1ibDckRlxibCQiKysrK1c5RmFebDckJEZhXGxGYV5sRmJibDckRmVibEYqRmdcbC1GXFxsNiQ3JkZmYmw3JEZlYmwkIisrKytrPEZhXmw3JCQiKysrKytXRmFebEZbY2w3JEZeY2xGKkZnXGwtRlxcbDYkNyZGYGNsNyRGXmNsJCIrKysrO0BGYV5sNyQkIisrKysrW0ZhXmxGZWNsNyRGaGNsRipGZ1xsLUZcXGw2JDcmRmpjbDckRmhjbCQiKysrKytERmFebDckJCIrKysrK19GYV5sRl9kbDckRmJkbEYqRmdcbC1GXFxsNiQ3JkZkZGw3JEZiZGwkIisrKys7SEZhXmw3JCQiKysrKytjRmFebEZpZGw3JEZcZWxGKkZnXGwtRlxcbDYkNyZGXmVsNyRGXGVsJCIrKysra0xGYV5sNyQkIisrKysrZ0ZhXmxGY2VsNyRGZmVsRipGZ1xsLUZcXGw2JDcmRmhlbDckRmZlbCQiKysrK1dRRmFebDckJCIrKysrK2tGYV5sRl1mbDckRmBmbEYqRmdcbC1GXFxsNiQ3JkZiZmw3JEZgZmwkIisrKytjVkZhXmw3JCQiKysrKytvRmFebEZnZmw3JEZqZmxGKkZnXGwtRlxcbDYkNyZGXGdsNyRGamZsJCIrKysrK1xGYV5sNyQkIisrKysrc0ZhXmxGYWdsNyRGZGdsRipGZ1xsLUZcXGw2JDcmRmZnbDckRmRnbCQiKysrK3dhRmFebDckJCIrKysrK3dGYV5sRltobDckRl5obEYqRmdcbC1GXFxsNiQ3JkZgaGw3JEZeaGwkIisrKyslMydGYV5sNyQkRmZdbEZhXmxGZWhsNyRGaGhsRipGZ1xsLUZcXGw2JDcmRmlobDckRmhobCQiKysrK0NuRmFebDckJCIrKysrKyUpRmFebEZeaWw3JEZhaWxGKkZnXGwtRlxcbDYkNyZGY2lsNyRGYWlsJCIrKysrJ1IoRmFebDckJCIrKysrKykpRmFebEZoaWw3JEZbamxGKkZnXGwtRlxcbDYkNyZGXWpsNyRGW2psJCIrKysrKyIpRmFebDckJCIrKysrKyMqRmFebEZiamw3JEZlamxGKkZnXGwtRlxcbDYkNyZGZ2psNyRGZWpsJCIrKysrTykpRmFebDckJCIrKysrKycqRmFebEZcW203JEZfW21GKkZnXGwtRlxcbDYkNyZGYVttNyRGX1ttJCIrKysrLycqRmFebDckJCIiIkYrRmZbbTckRmlbbUYqRmdcbC1GXFxsNiQ3JkZbXG03JEZpW20kIisrK1NTNSEiKjckJCIrKysrUzVGYlxtRmBcbTckRmRcbUYqRmdcbC1GXFxsNiQ3JkZmXG03JEZkXG0kIisrK2dCNkZiXG03JCQiKysrKyEzIkZiXG1GW11tNyRGXl1tRipGZ1xsLUZcXGw2JDcmRmBdbTckRl5dbSQiKysrKzU3RmJcbTckJCIrKysrPzZGYlxtRmVdbTckRmhdbUYqRmdcbC1GXFxsNiQ3JkZqXW03JEZoXW0kIisrK2cqSCJGYlxtNyQkIisrKytnNkZiXG1GX15tNyRGYl5tRipGZ1xsLUZcXGw2JDcmRmRebTckRmJebSQiKysrUyNSIkZiXG03JCRGYF5sRmJcbUZpXm03JEZcX21GKkZnXGwtRlxcbDYkNyZGXV9tNyRGXF9tJCIrKytTKVsiRmJcbTckJCIrKysrUzdGYlxtRmJfbTckRmVfbUYqRmdcbC1GXFxsNiQ3JkZnX203JEZlX20kIisrK2coZSJGYlxtNyQkIisrKyshRyJGYlxtRlxgbTckRl9gbUYqRmdcbC1GXFxsNiQ3JkZhYG03JEZfYG0kIisrKyshcCJGYlxtNyQkIisrKys/OEZiXG1GZmBtNyRGaWBtRipGZ1xsLUZcXGw2JDcmRlthbTckRmlgbSQiKysrZyZ6IkZiXG03JCQiKysrK2c4RmJcbUZgYW03JEZjYW1GKkZnXGwtRlxcbDYkNyZGZWFtNyRGY2FtJCIrKytTLz5GYlxtNyQkIisrKysrOUZiXG1GamFtNyRGXWJtRipGZ1xsLUZcXGw2JDcmRl9ibTckRl1ibSQiKysrUzs/RmJcbTckJCIrKysrUzlGYlxtRmRibTckRmdibUYqRmdcbC1GXFxsNiQ3JkZpYm03JEZnYm0kIisrK2dKQEZiXG03JCQiKysrKyFbIkZiXG1GXmNtNyRGYWNtRipGZ1xsLUZcXGw2JDcmRmNjbTckRmFjbSQiKysrK11BRmJcbTckJCIrKysrPzpGYlxtRmhjbTckRltkbUYqRmdcbC1GXFxsNiQ3JkZdZG03JEZbZG0kIisrK2dyQkZiXG03JCQiKysrK2c6RmJcbUZiZG03JEZlZG1GKkZnXGwtRlxcbDYkNyZGZ2RtNyRGZWRtJCIrKytTJ1wjRmJcbTckJEZbX2xGYlxtRlxlbTckRl9lbUYqRmdcbC1GXFxsNiQ3JkZgZW03JEZfZW0kIisrK1NDRUZiXG03JCQiKysrK1M7RmJcbUZlZW03JEZoZW1GKkZnXGwtRlxcbDYkNyZGamVtNyRGaGVtJCIrKytnYkZGYlxtNyQkIisrKyshbyJGYlxtRl9mbTckRmJmbUYqRmdcbC1GXFxsNiQ3JkZkZm03JEZiZm0kIisrKyshKkdGYlxtNyQkIisrKys/PEZiXG1GaWZtNyRGXGdtRipGZ1xsLUZcXGw2JDcmRl5nbTckRlxnbSQiKysrZ0ZJRmJcbTckJCIrKysrZzxGYlxtRmNnbTckRmZnbUYqRmdcbC1GXFxsNiQ3JkZoZ203JEZmZ20kIisrK1NvSkZiXG03JCQiKysrKys9RmJcbUZdaG03JEZgaG1GKkZnXGwtRlxcbDYkNyZGYmhtNyRGYGhtJCIrKytTN0xGYlxtNyQkIisrKytTPUZiXG1GZ2htNyRGamhtRipGZ1xsLUZcXGw2JDcmRlxpbTckRmpobSQiKysrZ2ZNRmJcbTckJCIrKysrISk9RmJcbUZhaW03JEZkaW1GKkZnXGwtRlxcbDYkNyZGZmltNyRGZGltJCIrKysrNU9GYlxtNyQkIisrKys/PkZiXG1GW2ptNyRGXmptRipGZ1xsLUZcXGw2JDcmRmBqbTckRl5qbSQiKysrZ2pQRmJcbTckJEZoXmxGYlxtRmVqbTckRmhqbUYqRmdcbC1GXFxsNiQ3JkZpam03JEZoam0kIisrK1M/UkZiXG03JCRGYltsRitGXltuNyRGYVtuRipGZ1xsLUZcXGw2JDcmRmJbbjckRmFbbiQiKysrUyEzJUZiXG03JCQiKysrK1M/RmJcbUZnW243JEZqW25GKkZnXGwtRlxcbDYkNyZGXFxuNyRGaltuJCIrKytnVlVGYlxtNyQkIisrKyshMyNGYlxtRmFcbjckRmRcbkYqRmdcbC1GXFxsNiQ3JkZmXG43JEZkXG4kIisrKys1V0ZiXG03JCQiKysrKz9ARmJcbUZbXW43JEZeXW5GKkZnXGwtRlxcbDYkNyZGYF1uNyRGXl1uJCIrKytnelhGYlxtNyQkIisrKytnQEZiXG1GZV1uNyRGaF1uRipGZ1xsLUZcXGw2JDcmRmpdbjckRmhdbiQiKysrU19aRmJcbTckJCIrKysrK0FGYlxtRl9ebjckRmJebkYqRmdcbC1GXFxsNiQ3JkZkXm43JEZiXm4kIisrK1NHXEZiXG03JCQiKysrK1NBRmJcbUZpXm43JEZcX25GKkZnXGwtRlxcbDYkNyZGXl9uNyRGXF9uJCIrKytnMl5GYlxtNyQkIisrKyshRyNGYlxtRmNfbjckRmZfbkYqRmdcbC1GXFxsNiQ3JkZoX243JEZmX24kIisrKyshSCZGYlxtNyQkIisrKys/QkZiXG1GXWBuNyRGYGBuRipGZ1xsLUZcXGw2JDcmRmJgbjckRmBgbiQiKysrZ3ZhRmJcbTckJCIrKysrZ0JGYlxtRmdgbjckRmpgbkYqRmdcbC1GXFxsNiQ3JkZcYW43JEZqYG4kIisrK1NrY0ZiXG03JCRGX2BsRmJcbUZhYW43JEZkYW5GKkZnXGwtRlxcbDYkNyZGZWFuNyRGZGFuJCIrKytTY2VGYlxtNyQkIisrKytTQ0ZiXG1GamFuNyRGXWJuRipGZ1xsLUZcXGw2JDcmRl9ibjckRl1ibiQiKysrZ15nRmJcbTckJCIrKysrIVsjRmJcbUZkYm43JEZnYm5GKkZnXGwtRlxcbDYkNyZGaWJuNyRGZ2JuJCIrKysrXWlGYlxtNyQkIisrKys/REZiXG1GXmNuNyRGYWNuRipGZ1xsLUZcXGw2JDcmRmNjbjckRmFjbiQiKysrZ15rRmJcbTckJCIrKysrZ0RGYlxtRmhjbjckRltkbkYqRmdcbC1GXFxsNiQ3JkZdZG43JEZbZG4kIisrK1NjbUZiXG03JCQiKysrKytFRmJcbUZiZG43JEZlZG5GKkZnXGwtRlxcbDYkNyZGZ2RuNyRGZWRuJCIrKytTa29GYlxtNyQkIisrKytTRUZiXG1GXGVuNyRGX2VuRipGZ1xsLUZcXGw2JDcmRmFlbjckRl9lbiQiKysrZ3ZxRmJcbTckJCIrKysrIW8jRmJcbUZmZW43JEZpZW5GKkZnXGwtRlxcbDYkNyZGW2ZuNyRGaWVuJCIrKysrIUgoRmJcbTckJCIrKysrP0ZGYlxtRmBmbjckRmNmbkYqRmdcbC1GXFxsNiQ3JkZlZm43JEZjZm4kIisrK2cydkZiXG03JCQiKysrK2dGRmJcbUZqZm43JEZdZ25GKkZnXGwtRlxcbDYkNyZGX2duNyRGXWduJCIrKytTR3hGYlxtNyQkRmlgbEZiXG1GZGduNyRGZ2duRipGZ1xsLUZcXGw2JDcmRmhnbjckRmdnbiQiKysrU196RmJcbTckJCIrKysrU0dGYlxtRl1objckRmBobkYqRmdcbC1GXFxsNiQ3JkZiaG43JEZgaG4kIisrK2d6IilGYlxtNyQkIisrKyshKUdGYlxtRmdobjckRmpobkYqRmdcbC1GXFxsNiQ3JkZcaW43JEZqaG4kIisrKys1JSlGYlxtNyQkIisrKys/SEZiXG1GYWluNyRGZGluRipGZ1xsLUZcXGw2JDcmRmZpbjckRmRpbiQiKysrZ1YnKUZiXG03JCQiKysrK2dIRmJcbUZbam43JEZeam5GKkZnXGwtRlxcbDYkNyZGYGpuNyRGXmpuJCIrKytTISkpKUZiXG03JCQiIiRGK0Zlam43JEZoam5GKkZnXGwtRlxcbDYkNyZGampuNyRGaGpuJCIrKytTPyIqRmJcbTckJCIrKysrU0lGYlxtRl9bbzckRmJbb0YqRmdcbC1GXFxsNiQ3JkZkW283JEZiW28kIisrK2dqJCpGYlxtNyQkIisrKyshMyRGYlxtRmlbbzckRlxcb0YqRmdcbC1GXFxsNiQ3JkZeXG83JEZcXG8kIisrKys1JypGYlxtNyQkIisrKys/SkZiXG1GY1xvNyRGZlxvRipGZ1xsLUZcXGw2JDcmRmhcbzckRmZcbyQiKysrZ2YpKkZiXG03JCQiKysrK2dKRmJcbUZdXW83JEZgXW9GKkZnXGwtRlxcbDYkNyZGYl1vNyRGYF1vJCIrKytDNjUhIik3JCRGY2FsRmJcbUZnXW83JEZbXm9GKkZnXGwtRlxcbDYkNyZGXF5vNyRGW15vJCIrKyslby4iRmldbzckJEZiX2xGYlxtRmFebzckRmReb0YqRmdcbC1GXFxsNiQ3JkZlXm83JEZkXm8kIisrK3dpNUZpXW83JCQiKysrKyFHJEZiXG1Gal5vNyRGXV9vRipGZ1xsLUZcXGw2JDcmRl9fbzckRl1fbyQiKysrKyozIkZpXW83JCQiKysrKz9MRmJcbUZkX283JEZnX29GKkZnXGwtRlxcbDYkNyZGaV9vNyRGZ19vJCIrKytjOjZGaV1vNyQkIisrKytnTEZiXG1GXmBvNyRGYWBvRipGZ1xsLUZcXGw2JDcmRmNgbzckRmFgbyQiKysrV1U2RmldbzckJCIrKysrK01GYlxtRmhgbzckRlthb0YqRmdcbC1GXFxsNiQ3JkZdYW83JEZbYW8kIisrK2twNkZpXW83JCQiKysrK1NNRmJcbUZiYW83JEZlYW9GKkZnXGwtRlxcbDYkNyZGZ2FvNyRGZWFvJCIrKys7KD4iRmldbzckJCIrKysrIVskRmJcbUZcYm83JEZfYm9GKkZnXGwtRlxcbDYkNyZGYWJvNyRGX2JvJCIrKysrRDdGaV1vNyQkIisrKys/TkZiXG1GZmJvNyRGaWJvRipGZ1xsLUZcXGw2JDcmRltjbzckRmlibyQiKysrO2A3RmldbzckJCIrKysrZ05GYlxtRmBjbzckRmNjb0YqRmdcbC1GXFxsNiQ3JkZlY283JEZjY28kIisrK2siRyJGaV1vNyQkRmJdbEZiXG1GamNvNyRGXWRvRipGZ1xsLUZcXGw2JDcmRl5kbzckRl1kbyQiKysrVzU4RmldbzckJCIrKysrU09GYlxtRmNkbzckRmZkb0YqRmdcbC1GXFxsNiQ3JkZoZG83JEZmZG8kIisrK2NSOEZpXW83JCQiKysrKyFvJEZiXG1GXWVvNyRGYGVvRipGZ1xsLUZcXGw2JDcmRmJlbzckRmBlbyQiKysrK3A4RmldbzckJCIrKysrP1BGYlxtRmdlbzckRmplb0YqRmdcbC1GXFxsNiQ3JkZcZm83JEZqZW8kIisrK3cpUiJGaV1vNyQkIisrKytnUEZiXG1GYWZvNyRGZGZvRipGZ1xsLUZcXGw2JDcmRmZmbzckRmRmbyQiKysrJSlHOUZpXW83JCQiKysrKytRRmJcbUZbZ283JEZeZ29GKkZnXGwtRlxcbDYkNyZGYGdvNyRGXmdvJCIrKytDZjlGaV1vNyQkIisrKytTUUZiXG1GZWdvNyRGaGdvRipGZ1xsLUZcXGw2JDcmRmpnbzckRmhnbyQiKysrJyoqWyJGaV1vNyQkIisrKyshKVFGYlxtRl9obzckRmJob0YqRmdcbC1GXFxsNiQ3JkZkaG83JEZiaG8kIisrKytAOkZpXW83JCQiKysrKz9SRmJcbUZpaG83JEZcaW9GKkZnXGwtRlxcbDYkNyZGXmlvNyRGXGlvJCIrKytPXzpGaV1vNyQkIisrKytnUkZiXG1GY2lvNyRGZmlvRipGZ1xsLUZcXGw2JDcmRmhpbzckRmZpbyQiKysrLyVlIkZpXW83JEZnekZdam83JEZnekYqRmdcbC0lK0FYRVNMQUJFTFNHNiRRIng2IlEhRmVqby0lJVZJRVdHNiQ7RmpbbCQiI1NGaVtsOyQhI0shIiMkIjIxKysrKys/aiIhIzo= NiMsJC1JJFN1bUdJKF9zeXNsaWJHNiI2JCokLCZJImlHRicjIiIiIiNEI0YtIiNdRi0iIiMvRis7IiIhIiMqKkYs NiMkIisrK0dMQCEiKQ== Das exakte Ergebnis (auf 10 Stellen nach dem Dezimalpunkt) lautet: evalf(int(x^2,x=0..4)); NiMkIitMTExMQCEiKQ== Integrationstechniken Uneigentliche Integrale Mehrfachintegrale Doppelintegrale Zun\344chst wird bei einem Doppelintegral das innere Integral berechnet: Int( Int(x*y,y=x^2..x+2), x=-1..2 )=Int( int(x*y,y=x^2..x+2), x=-1..2); NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JC1GJTYkKiZJInhHRikiIiJJInlHRilGLy9GMDsqJEYuIiIjLCZGLkYvRjRGLy9GLjshIiJGNC1GJTYkLCQqJkYuRi8sJiokRjVGNEYvKiRGLiIiJUY4Ri8jRi9GNEY2 Danach wird auch noch das \344u\337ere Integral berechnet: Int( int(x*y,y=x^2..x+2), x=-1..2)=int( int(x*y,y=x^2..x+2), x=-1..2); NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JCwkKiZJInhHRikiIiIsJiokLCZGLUYuIiIjRi5GMkYuKiRGLSIiJSEiIkYuI0YuRjIvRi07RjVGMiMiI1giIik= Zum Schlu\337 wird das Endergebnis ausgerechnet: int( int(x*y,y=x^2..x+2), x=-1..2)= evalf(int( int(x*y,y=x^2..x+2), x=-1..2)); NiMvIyIjWCIiKSQiKysrK0RjISIq