Geometrische Synthese von Verzahnungen mit sich kreuzenden Achsen

Dipl.-Ing. Isajs Kans-Kagans

Riga, Lettland

Prof. Dr.-Ing. Michael Haas

Georg-Simon-Ohm-Hochschule Nürnberg

Abstract

In der umfangreichen Literatur, die der Geometrie der Verzahnungen gewidmet ist, ist kein einziges konkretes Beispiel der geometrischen Synthese von Verzahnungen mit sich kreuzenden Achsen zu finden. Zu dieser Schlussfolgerung kommt man nach dem Studium der Werke [2]-[14]. Dieser Umstand hat sachliche Gründe.

Ein neuer Ansatz zur Lösung des Problems der geometrischen Synthese von Verzahnungen wird dargestellt. Der grundsätzliche Unterschied des vorgeschlagenen Verfahrens von den derzeit bekannten besteht im völligen Verzicht auf die Verwendung von Hüllkurven und Hüllflächen. Grund hierfür ist, dass das oben erwähnte Problem nichts mit der Ermittlung von Hüllkurven oder Hüllflächen zu tun hat.

Das hier dargestellte Verfahren ist universell anwendbar für die geometrische Berechnung von zylindrischen Schraubenrädern mit sich kreuzenden Achsen.

Inhaltsverzeichnis

1.	Einleitung	4
2.	Grundbeziehungen	4
3.	Ein Beispiel zur Anwendung des allgemeinen Verfahrens	13
4.	Der Fall eines Kreisevolventenprofils	22
5.	Anhang	28
6.	Literaturverzeichnis	29

1. Einleitung

Das vorliegende Werk stellt eine Verallgemeinerung des in [1] geschilderten Verfahrens der geometrischen Synthese von Verzahnungen mit parallelen Achsen auf den Fall von zwei zylindrischen Schraubenrädern mit sich kreuzenden Achsen dar. Diese Verallgemeinerung baut auf der Voraussetzung auf, dass weder Hüllkurven noch Hüllflächen, sondern gewissen Bedingungen genügende Schraubenflächen zu ermitteln sind. Das Problem wird folgenderweise formuliert: Es seien zwei sich kreuzende Geraden gegeben. Weiterhin soll eine Schraubenfläche gegeben sein, deren Achse mit einer der erwähnten Geraden übereinstimmt. Das Problem besteht in der Ermittlung einer Schraubenfläche, deren Achse mit der zweiten dieser Geraden übereinstimmt und die mit der gegebenen Schraubenfläche eine regelmäßige (im Sinne von [1]) Verzahnung bildet und zwar mit einer bestimmten Übersetzung (einschließlich der Richtung der Rotation der gesuchten Schraubenfläche). Dabei soll der Schraubengang der gesuchten Schraubenfläche von vornhinein gegeben sein. Es soll auch bekannt sein, ob die gesuchte Schraubenfläche mit Rechts- oder Linkswindung ausgeführt werden muss.

Dass sowohl Hüllkurven als auch Hüllflächen für die Lösung dieses Problems nicht geeignet sind, ist schon aus folgendem Beispiel ersichtlich. Ein und dieselbe Schnecke (die als ein Zahnrad mit kleiner Zähnezahl und kleinem Anstieg betrachtet werden darf) kann sowohl mit einem Schneckenrad als auch mit einem zylindrischen Schraubenrad (mit derselben Zähnezahl) eine regelmäßige Verzahnung bilden. Die relativen Bewegungen der Schnecke und des Rades sind in beiden Fällen dieselben. Geht man von der Vermutung aus, dass es sich um die Ermittlung der Hüllfläche um eine von der Oberfläche der Schnecke gebildete Schar handelt, so müssen zwangsläufig die Oberflächen sowohl des Schneckenrades als auch des zylindrischen Schraubenrades dieselbe Hüllfläche darstellen. Diese unterscheiden sich aber wesentlich. Offenbar kann man auf die Verwendung von Hüllkurven bzw. Hüllflächen verzichten und sich des nachstehenden Verfahrens bedienen.

Wenn es sich in der Sachliteratur um zylindrische Schraubenräder handelt, wird der Begriff des Normalschnitts des Zahnrades systematisch angewandt. Bei genauerer Betrachtung sieht man aber leicht, dass dieser Begriff keinen Sinn macht. In der Tat betrifft der Begriff der Teilung die Periodizität des Profils des Zahnrades. Wenn aber dessen Stirnschnitt periodisch ist, ist ein schräger Querschnitt aperiodisch. An und für sich wäre dieser Umstand auch nicht dramatisch (den Stirnschnitt einer eingängigen Schnecke z.B. darf man auch als einen aperiodischen betrachten). Bemerkenswert ist, dass der Winkel, unter dem der Normalschnitt die Achse der Schraubenfläche schneiden soll, eigentlich unbekannt ist. Dies ist darauf zurückzuführen, dass die Winkel, die Schraubenlinien mit demselben Schraubengang mit den Mantellinien der zugehörigen Drehzylinder bilden, von den Radien dieser Zylinder abhängig und somit nicht konstant sind. Welchem dieser Winkel der Vorzug gegeben werden soll, ist nicht eindeutig. Noch schlimmer ist aber, dass das Schnittgebilde sich ändert, wenn die Ebene des Schnitts um die Achse der Schraubenfläche rotiert. So wird der Begriff des Normalschnitts völlig unbestimmt. Deshalb sollte auf die Verwendung von Normalschnitten verzichtet werden und nur Stirnschnitte verwendet werden. Somit vermeidet man jegliche Unbestimmtheit. Durch einen Stirnschnitt und den Schraubengang ist eine Schraubenfläche völlig definiert, wenn noch bekannt ist, ob sie mit Rechts- oder Linkswindung ausgeführt sein soll. In der folgenden Darlegung wird immer nur von Stirnschnitten der Schraubenflächen ausgegangen. Auch der Axialschnitt kann verwendet werden.

Die entwickelte Lösung besteht in der Ermittlung einer hinreichenden Zahl von Punkten des Stirnschnitts der gesuchten Oberfläche. Kennt man diese, so kann die Oberfläche mit hinreichender Genauigkeit wieder aufgebaut werden.

2. Grundbeziehungen

Der Grundgedanke der hier vorgeschlagenen Lösung des in der Einleitung formulierten Problems ist, wie auch in [1], dass eine beliebige Umdrehung einer Schraubenfläche um ihre Achse einer Verschiebung derselben Schraubenfläche längs derselben Achse äquivalent ist, und zwar der Verschiebung proportional. Wenn man diese Tatsache in Erwägung zieht, vereinfacht sich die Lösung des Problems beträchtlich unter Beibehaltung der logischen Strenge.

Wir beginnen mit der Einführung von kartesischen Rechtssystemen, vgl. Abb. 1. $O_0 z$ (also auch Oz) sei die

Achse der gegebenen Schraubenfläche, $O_1 z_1$ die Achse der zu ermittelnden Schraubenfläche. Die gegebene Schraubenfläche darf ohne Beschränkung der Allgemeinheit immer mit Rechtswindung sein und immer im ent-

gegengesetzten Uhrzeigersinn (wenn vom Zielpunkt des Vektors \overrightarrow{Oz} betrachtet) rotieren. Dabei verschiebt sich diese Schraubenfläche in negativer Richtung der Achsen Oz und $O_0 z$ ("nach unten"). Die Richtung der

gleichzeitigen Rotation der zu ermittelnden Schraubenfläche (also die Richtung ihrer Verschiebung längs der $O_1 z_1$ Achse) bleibt dabei frei wählbar.

Setzen wir jetzt alle gezeigten Koordinatensysteme außer dem System O x y z in eine Translation, deren Geschwindigkeit immer dem Betrag nach mit dieser der beibehaltenen zum System $O_0 x_3 y_1 z$ relativen Verschiebung der gegebenen Schraubenfläche übereinstimmt, aber sich "nach oben" richtet. Dann bleibt die gegebene Schraubenfläche relativ zum System O x y z unbeweglich, während das System $O_1 x_1 y_1 z_1$ zusammen mit der gleichzeitig längs der $O_1 z_1$ Achse gleitenden zu ermittelnden Schraubenfläche sich in Richtung

des Vektors \overrightarrow{Oz} ("nach oben") relativ zum System Oxyz verschiebt. Da die Summe zweier Verschiebungen wieder eine Verschiebung ist, gelangen wir somit zu einer Situation, bei der sich die zu ermittelnde Schraubenfläche gegenüber der gegebenen unbeweglichen Schraubenfläche verschiebt, während keine Rotation auftritt. Eine weitere Besonderheit besteht darin, dass eine der betrachteten Oberflächen nicht starr an das zugehörige Koordinatensystem gebunden ist, sondern längs der $O_1 z_1$ Achse gleitet. Dieser Umstand vereinfacht die

nächsten Schritte der Lösung, wird aber später wieder berücksichtigt. Die Koordinatensysteme O x y z und $O_1 x_1 y_1 z_1$, die wir im weiteren benötigen, stehen durch die folgenden Formeln miteinander in Verbindung

$$\begin{cases} x = x_1 \cos \alpha - z_1 \sin \alpha \\ y = y_1 + L \\ z = x_1 \sin \alpha + z_1 \cos \alpha + t \\ \begin{cases} x_1 = x \cos \alpha + (z - t) \sin \alpha \\ y_1 = y - L \\ z_1 = -x \sin \alpha + (z - t) \cos \alpha \end{cases}$$
(2.2)

Dabei ist α der Winkel, den die Achsen $O_0 z$ und $O_1 z_1$ miteinander bilden, L sei der Abstand zwischen denselben Achsen und t die momentane Verschiebung des Systems $O_1 x_1 y_1 z_1$ dem System O x y z gegenüber. Sei nun die gegebene Schraubenfläche durch die Gleichungen

$$\begin{cases} x = \rho(\zeta) \cos\left(\zeta + \frac{2\pi}{T}\xi\right) \\ y = \rho(\zeta) \sin\left(\zeta + \frac{2\pi}{T}\xi\right) \\ z = \xi \end{cases}$$
(2.3)

mit zwei voneinander unabhängigen Parametern ζ und ξ im Koordinatensystem Oxyz definiert. Dabei bedeuten ζ und ρ den Polarwinkel bzw. den Polarradius eines Punkts des Stirnschnitts der gegebenen Schraubenfläche im Polarkoordinatensystem, dessen Ursprung auf der Achse der Schraubenfläche liegt. ξ entspricht dem Abstand der Ebene des Stirnschnitts von der Ebene z = 0. *T* ist der Schraubengang der gegebenen Schraubenfläche.

Der Winkel ζ soll entgegen dem Uhrzeigersinn gemessen werden (vom Zielpunkt des Vektors \overrightarrow{Oz} aus betrachtet). Da wir uns nur für Schraubenflächen mit Rechtswindung entschieden haben, muss der Schraubengang T immer positiv sein.

Die zu ermittelnde Schraubenfläche sei durch ihre Gleichungen

$$\begin{cases} X_{1} = \rho_{1} \left(\zeta_{1} \right) \cos \left(\zeta_{1} + \frac{2\pi}{T_{1}} \xi_{1} \right) \\ y_{1} = \rho_{1} \left(\zeta_{1} \right) \sin \left(\zeta_{1} + \frac{2\pi}{T_{1}} \xi_{1} \right) \\ Z_{1} = \xi_{1} + t_{1} \end{cases}$$

$$(2.4)$$

mit zwei voneinander unabhängigen Parametern ζ_1 und ξ_1 im Koordinatensystem $O_1 x_1 y_1 z_1$ definiert. Die Parameter $\zeta_1, \rho_1, \xi_1, T_1$ sind sinngemäß wie die Parameter ζ, ρ, ξ, T definiert.

Der Winkel ζ_1 soll wieder entgegen dem Uhrzeigersinn (vom Zielpunkt des Vektors $\overrightarrow{O_1 z_1}$ aus betrachtet) gemessen werden. Diese Schraubenfläche darf sowohl mit Rechts- als auch mit Linkssteigung ausgeführt sein. Der Schraubengang T_1 ist dementsprechend positiv bzw. negativ. Der Parameter t_1 bestimmt die Verschiebung der zu ermittelnden Schraubenfläche längs der $O_1 z_1$ Achse.

Wir nehmen jetzt an, dass jeder Umdrehung der gegebenen Schraubenfläche um ihre Achse um einen beliebigen Winkel ϕ eine Umdrehung der zu ermittelnden Schraubenfläche um ihre Achse um einen Winkel $k\phi$ entspricht, wobei k konstant, d.h. von ϕ unabhängig ist. Vom geometrischen Gesichtspunkt aus entspricht eine Umdrehung der Schraubenfläche (2.3) um ihre Achse um den Winkel ϕ genau deren Verschiebung um

 $\pm \frac{\phi}{2\pi}$ *T* längs derselben Achse. Eine Umdrehung der Schraubenfläche (2.4) um ihre Achse um den Winkel

 $k\phi$ entspricht einer Verschiebung um $\pm \frac{k\phi}{2\pi}T_1$ längs derselben Achse. Somit muss für die Verschiebung t des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem O x y z und die gleichzeitige Verschiebung t_1 der Schraubenfläche (2.4) längs der $O_1 z_1$ Achse die Gleichung

$$\frac{t_1}{t} = \pm \frac{\frac{k \phi}{2\pi} T_1}{\frac{\phi}{2\pi} T} = \pm k \frac{T_1}{T}$$

gelten. Hieraus folgt

$$t_1 = \pm k \frac{T_1}{T} t.$$
(2.5)

Sei jetzt *n* die größte zulässige natürliche Zahl, für die die Identität

$$\rho(\zeta) \equiv \rho\left(\zeta + \frac{2\pi}{n}\right)$$

gilt, n_1 sei die größte zulässige natürliche Zahl, für die die Identität

$$\rho_1(\zeta_1) \equiv \rho_1\left(\zeta_1 + \frac{2\pi}{n_1}\right)$$

gilt. n und n_1 sind offenbar die Zähnezahlen der Zahnräder, die die zu synthetisierende Verzahnung bilden sollen.

Die Umdrehungen um $\pm \frac{2\pi}{n}$ bzw. um $\pm \frac{2\pi}{n_1}$ sind offenbar dem Betrag nach die kleinsten der Umdrehungen, die die Schraubenfläche (2.3) bzw. (2.4) auf sich selbst abbilden. Deshalb muss jeder Umdrehung der Schraubenfläche (2.3) um $\pm \frac{2\pi}{n}$ eine Umdrehung der Schraubenfläche (2.4) um $\pm \frac{2\pi}{n_1}$ entsprechen und

umgekehrt. Dies bedeutet aber, dass

$$\pm k\frac{2\pi}{n} = \pm \frac{2\pi}{n_1}$$

oder

$$|k| = \frac{n}{n_1}$$

gelten muss. Im Unterschied zum Fall der Zahnräder mit gleichlaufenden Achsen [1] muss die Gleichung

$$\left|\frac{T}{T_1}\right| = \frac{n}{n_1}$$

nicht unbedingt gelten.

Folgende Regel für die Bestimmung des Vorzeichens der Übersetzung *k* soll vereinbart werden:

Nehmen wir an, dass bei positiven Werten der Üb<u>erse</u>tzung die gesuchte Schraubenfläche im entgegengesetzten Uhrzeigersinn (vom Zielpunkt des Vektors $O_1 z_1$ aus betrachtet) rotiert, bei negativen Werten aber im Uhrzeigersinn. Es ist leicht einzusehen, dass bei dieser Annahme den positiven Werten des Produkts kT_1 Verschiebungen der gesuchten Schraubenfläche in negativer Richtung der $O_1 z_1$ Achse entsprechen, negative Werte desselben Produkts entsprechen Verschiebungen in positiver Richtung. Daraus kommt man zum Schluss, dass für den in Gleichungen (2.4) auftretenden Parameter t_1 das Verhältnis

$$t_1 = -k\frac{T_1}{T}t \tag{2.6}$$

gelten muss.

So befindet sich die zu ermittelnde Schraubenfläche (2.4) relativ zu der unbeweglichen gegebenen Schraubenfläche (2.3) in Parallelverschiebung (Translation) mit der Geschwindigkeit $\vec{\tau}$, deren Komponenten sich als

$$\begin{cases} \tau_x = k \frac{T_1}{T} t \sin \alpha \\ \tau_y = 0 \\ \tau_z = t - k \frac{T_1}{T} t \cos \alpha \end{cases}$$

beziehungsweise nach Division durch t als

$$\begin{cases} \tau_x = k \frac{T_1}{T} \sin \alpha \\ \tau_y = 0 \\ \tau_z = 1 - k \frac{T_1}{T} \cos \alpha \end{cases}$$
(2.7)

darstellen lassen. Der Vektor (2.7) ist bis auf den skalaren Faktor t eindeutig bestimmt.

Die unbewegliche Schraubenfläche (2.3) kann offenbar nur in jenen Punkten von der sich in Translation befindenden Schraubenfläche (2.4) berührt werden, in denen der Vektor (2.7) die Schraubenfläche (2.3) berührt. Das bedeutet aber, dass (2.7) der Tangentialebene an die Schraubenfläche (2.3) im betreffenden Punkt parallel sein muss. So muss das Spatprodukt des Vektors (2.7) und irgendwelchen zwei nichtkollinea-

ren, der Tangentialebene parallelen Vektoren Null sein. Als solche können die Vektoren $\left\{\frac{\partial x}{\partial \zeta}, \frac{\partial y}{\partial \zeta}, \frac{\partial z}{\partial \zeta}\right\}$ und

 $\left\{\frac{\partial x}{\partial \xi}, \frac{\partial y}{\partial \xi}, \frac{\partial z}{\partial \xi}\right\}$ gewählt werden, wobei die partiellen Ableitungen im betreffenden Punkt zu berechnen sind. Aus den Gleichungen (2.3) folgt

$$\begin{cases} \frac{\partial x}{\partial \xi} = -\frac{2\pi}{T} \rho(\zeta) \sin\left(\zeta + \frac{2\pi}{T}\xi\right) \\ \frac{\partial y}{\partial \xi} = \frac{2\pi}{T} \rho(\zeta) \cos\left(\zeta + \frac{2\pi}{T}\xi\right) \\ \frac{\partial z}{\partial \xi} = 1 \end{cases}$$
(2.8)

und

$$\frac{\partial x}{\partial \zeta} = -\sqrt{\left[\rho(\zeta)\right]^{2} + \left[\rho'(\zeta)\right]^{2}} \sin\left[\zeta + \frac{2\pi}{T}\xi - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right]$$
$$\frac{\partial y}{\partial \zeta} = \sqrt{\left[\rho(\zeta)\right]^{2} + \left[\rho'(\zeta)\right]^{2}} \cos\left[\zeta + \frac{2\pi}{T}\xi - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right].$$
$$\frac{\partial z}{\partial \zeta} = 0$$
(2.9)

Gleichung (2.10) stellt in analytischer Form die Bedingung der Komplanarität der Vektoren (2.7), (2.8) und (2.9) dar.

$$k\frac{T_{1}}{T}\sin\alpha - \frac{2\pi}{T}\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\zeta\right) - \sin\left[\zeta + \frac{2\pi}{T}\zeta - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right]$$

$$0 \qquad \qquad \frac{2\pi}{T}\rho(\zeta)\cos\left(\zeta + \frac{2\pi}{T}\zeta\right) - \cos\left[\zeta + \frac{2\pi}{T}\zeta - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right] = 0. \quad (2.10)$$

$$1 - k\frac{T_{1}}{T}\cos\alpha \qquad \qquad 1 \qquad \qquad 0$$

Nach einigen Umformungen erhält man

$$\xi = \frac{T}{2\pi} \left\{ \arccos \left[-\frac{2\pi\rho(\zeta)\rho'(\zeta)(T-kT_1\cos\alpha)}{kTT_1\sqrt{\left[\rho(\zeta)\right]^2 + \left[\rho'(\zeta)\right]^2}\sin\alpha} \right] + \arctan \frac{\rho'(\zeta)}{\rho(\zeta)} - \zeta \right\}.$$
(2.11)

Gilt die Ungleichung

$$\frac{2\pi\rho(\zeta)\rho'(\zeta)(T-kT_1\cos\alpha)}{kTT_1\sqrt{\left[\rho(\zeta)\right]^2 + \left[\rho'(\zeta)\right]^2}\sin\alpha} \le 1,$$
(2.12)

so liefert (2.11) jene Werte der Veränderlichen ξ , nach deren Substitution zusammen mit dem betreffenden Wert der Veränderlichen ζ in (2.3) sich Koordinaten im Oxyz der eventuellen Berührungspunkte ergeben. Die Gleichung (2.11), die den Parameter *t* nicht enthält, definiert auf der unbeweglichen Schraubenfläche (2.3) eine Linie, in deren Punkten diese Schraubenfläche von der sich in Translation befindenden, zu ermittelnden Schraubenfläche berührt werden kann. Auf dieser Linie können für jeden festen Wert des Parameters *t* diesem Wert entsprechende Berührungspunkte ermittelt werden. Linie (2.11) ist vom Achsabstand der Zahnräder unabhängig.

Wir betrachten für einen festen Wert \tilde{t} des Parameters t die Schar der Schraubenlinien, die die zu ermittelnde Schraubenfläche bilden sollen. Diese Schraubenlinien haben eine gemeinsame Achse $O_1 z_1$, einen gemein-

samen Schraubengang T_1 und sind alle mit Rechts- bzw. Linkswindung. Wird aus (2.11) für den Wert ζ des Parameters ζ der Wert $\xi(\zeta)$ des Parameters ξ ermittelt, so sind die Koordinaten des entsprechenden Punkts \tilde{P} der Schraubenfläche (2.3) im Koordinatensystem Oxyz

$$\begin{cases} \tilde{x} = \rho\left(\tilde{\zeta}\right) \cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) \\ \tilde{y} = \rho\left(\tilde{\zeta}\right) \sin\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) \\ \tilde{z} = \xi\left(\tilde{\zeta}\right) \end{cases}$$
(2.13)

Durch diesen Punkt verläuft beim gewählten Wert \tilde{t} des Parameters t genau eine der betrachteten Schraubenlinien. Seien die Gleichungen dieser Linie im Koordinatensystem $O_1 x_1 y_1 z_1$

$$\begin{cases} x_{1} = \tilde{r} \cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right) \\ y_{1} = \tilde{r} \sin\left(\frac{2\pi}{T_{1}}\xi_{1}\right), \\ z_{1} = \xi_{1} + \tilde{c} \end{cases}$$
(2.14)

wobei ξ_1 ein veränderlicher Parameter ist. \tilde{r} ist der Radius des Zylinders, dessen Achse mit der Achse $O_1 z_1$ übereinstimmt und auf dessen Mantelfläche die Linie (2.14) gelegen ist. \tilde{c} ist die momentane Verschiebung derselben Linie gegenüber der Ebene $z_1 = 0$. Die Werte der Konstanten \tilde{r} und \tilde{c} werden in diesem Schritt noch nicht benötigt.

Aus (2.14) ergeben sich die Ausdrücke (2.15) für Ableitungen der Koordinaten x_1 , y_1 , z_1 nach dem Parameter ξ_1

$$\begin{cases} \tau_{1x_{1}} = \frac{d x_{1}}{d \xi_{1}} = -\frac{2 \pi}{T_{1}} \tilde{r} \sin \left(\frac{2 \pi}{T_{1}} \xi_{1} \right) = -\frac{2 \pi}{T_{1}} Y_{1} \\ \tau_{1y_{1}} = \frac{d y_{1}}{d \xi_{1}} = -\frac{2 \pi}{T_{1}} \tilde{r} \cos \left(\frac{2 \pi}{T_{1}} \xi_{1} \right) = -\frac{2 \pi}{T_{1}} X_{1} . \end{cases}$$

$$(2.15)$$

$$\tau_{1z_{1}} = \frac{d z_{1}}{d \xi_{1}} = -1$$

Ersetzt man jetzt im rechten Teil der Gleichungen (2.15) x_1 und y_1 durch die entsprechenden Formeln (2.2), so ergeben sich für den Wert ζ der Veränderlichen ζ die Gleichungen

$$\tau_{1x_{1}} = \frac{dx_{1}}{d\xi_{1}} = -\frac{2\pi}{T_{1}} \left(\tilde{y} - L \right) =$$

$$= -\frac{2\pi}{T_{1}} \left[\rho\left(\tilde{\zeta}\right) \sin\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) - L \right]$$

$$\tau_{1y_{1}} = \frac{dy_{1}}{d\xi_{1}} = \frac{2\pi}{T_{1}} \left[\tilde{x}\cos\alpha + \left(\tilde{z} - \tilde{t}\right)\sin\alpha \right] =$$

$$= \frac{2\pi}{T_{1}} \left[\rho\left(\tilde{\zeta}\right)\cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right)\cos\alpha + \left(\xi\left(\tilde{\zeta}\right) - \tilde{t}\right)\sin\alpha \right]$$

$$\tau_{1z_{1}} = \frac{dz_{1}}{d\xi_{1}} = 1$$
(2.16)

die die Komponenten des Vektors $\vec{\tau}_1$ der Tangente an die Schraubenlinie (2.14) zum Punkt \tilde{P} im Koordinatensystem $O_1 x_1 y_1 z_1$ ausdrücken. Den Ausdruck für $\xi(\tilde{\zeta})$ erhält man, indem man im rechten Teil des Ausdrucks (2.11) ζ durch $\tilde{\zeta}$ ersetzt.

Die Komponenten des Vektors $\vec{\tau}_1$ im Koordinatensystem Oxyz ergeben sich aus den Abbildungsgleichungen (2.1) (hier in Matrixschreibweise dargestellt) und dem Vektor (2.16):

$$\begin{pmatrix} \tau_{1x} \\ \tau_{1y} \\ \tau_{1z} \end{pmatrix} = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \begin{pmatrix} \tau_{1x_1} \\ \tau_{1y_1} \\ \tau_{1z_1} \end{pmatrix} = = \begin{cases} -\frac{2\pi}{T_1} \left[\rho\left(\tilde{\zeta}\right) \sin\left(\tilde{\zeta} + \frac{2\pi}{T} \xi\left(\tilde{\zeta}\right)\right) - L \right] \cos \alpha - \sin \alpha \\ \frac{2\pi}{T_1} \left[\rho\left(\tilde{\zeta}\right) \cos\left(\tilde{\zeta} + \frac{2\pi}{T} \xi\left(\tilde{\zeta}\right)\right) \cos \alpha + \left(\xi\left(\tilde{\zeta}\right) - \tilde{t}\right) \sin \alpha \right] \\ -\frac{2\pi}{T_1} \left[\rho\left(\tilde{\zeta}\right) \sin\left(\tilde{\zeta} + \frac{2\pi}{T} \xi\left(\tilde{\zeta}\right)\right) - L \right] \sin \alpha + \cos \alpha \end{cases}$$
(2.17)

Da Parallelverschiebungen den Richtungsvektor der Tangente nicht ändern, entfällt dabei für den Bildvektor der Verschiebungsanteil der Abbildung.

Ist \tilde{P} ein Berührungspunkt der gegebenen und der zu ermittelnden Schraubenflächen, so muss der Vektor $\vec{\tau}_1$ die Schraubenfläche (2.3) in diesem Punkt berühren, d.h. den Vektoren (2.8) und (2.9) komplanar sein. Die Bedingung dieser Komplanarität lässt sich analytisch als

$$\tau_{1x} = -\frac{2\pi}{T}\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\xi(\zeta)\right) = -\sin\left[\zeta + \frac{2\pi}{T}\xi(\zeta) - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right]$$

$$\tau_{1y} = \frac{2\pi}{T}\rho(\zeta)\cos\left(\zeta + \frac{2\pi}{T}\xi(\zeta)\right) = \cos\left[\zeta + \frac{2\pi}{T}\xi(\zeta) - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right]$$

$$\tau_{1z} = 1 = 0 \quad (2.18)$$

darstellen. Es soll dabei die erste Spalte der Determinante durch den rechten Teil der Gleichungen (2.17) mit ζ statt $\tilde{\zeta}$ ersetzt werden und dann statt des Terms $\xi(\zeta)$, wo immer dieser auftritt, der rechte Teil des Ausdrucks (2.11) substituiert werden. Es entsteht somit eine Gleichung bezüglich der einzigen Unbekannten ζ . Dies ist darauf zurückzuführen, dass die Drehungen der Koordinaten durch ihre Verschiebungen ersetzt wurden, und damit eine der Unbekannten aus dem Gleichungssystem eliminiert werden konnte. Dies erleichtert die Lösung des Problems wesentlich. Die entstehende Gleichung kann näherungsweise gelöst werden. Wenn ein Wert des Parameters ζ bekannt ist, errechnet man aus (2.11) die entsprechenden Werte des Parameters eventuellen Berührpunkte im Koordinatensystem $O_X y z$. Wendet man auf diese die Formeln (2.2) an, so erhält man die Koordinaten derselben Punkte im Koordinatensystem $O_1 x_1 y_1 z_1$, und zwar für den Wert \tilde{t} des Parameters t. Diese Punkte sollen nicht als ans Koordinatensystem $O_1 x_1 y_1 z_1$, sondern als an die zu ermittelnde Schraubenfläche gebunden betrachtet werden. So folgen sie dieser Schraubenfläche bei ihrem Gleiten längs der $O_1 z_1$ Achse. Um die zu ermittelnde Schraubenfläche wieder aufbauen zu können, braucht man die auf einen frei wählbaren festen Wert des Parameters t bezogenen Koordinaten ihrer Punkte. Die ermittelten

Punkte sollen auf diesen Wert des Parameters t reduziert werden. Allerdings ist zu prüfen, ob die irgendeinem Punkt entsprechende Schraubenlinie (gegebenenfalls die Linie (2.14)) sich mit der zu ermittelnden Schraubenfläche bewegend die Schraubenfläche (2.3) nicht schneidet. Am Beispiel dieser Linie wird gezeigt, wie die Überprüfung analytisch durchgeführt werden kann.

Wir beginnen mit der Ermittlung der Gleichungen der Linie im Koordinatensystem Oxyz. Für den mit dem Punkt \tilde{P} momentan übereinstimmenden Punkt der Schraubenlinie (2.14) müssen (unter Berücksichtigung der Formeln (2.2) und (2.13)) die Gleichungen

$$\begin{cases} \rho\left(\tilde{\zeta}\right)\cos\left(\tilde{\zeta}+\frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right)\cos\alpha+\left(\xi\left(\tilde{\zeta}\right)-\tilde{t}\right)\sin\alpha =\tilde{r}\cos\left(\frac{2\pi}{T_{1}}\tilde{\xi}_{1}\right)\\ \rho\left(\tilde{\zeta}\right)\sin\left(\tilde{\zeta}+\frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right)-L =\tilde{r}\sin\left(\frac{2\pi}{T_{1}}\tilde{\xi}_{1}\right)\\ -\rho\left(\tilde{\zeta}\right)\cos\left(\tilde{\zeta}+\frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right)\sin\alpha+\left(\xi\left(\tilde{\zeta}\right)-\tilde{t}\right)\cos\alpha =\tilde{\xi}_{1}+\tilde{c} \end{cases}$$
(2.19)

gelten. Hieraus folgt

$$\tilde{r} = \sqrt{\left[\rho\left(\tilde{\zeta}\right)\cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right)\cos\alpha + \left(\xi\left(\tilde{\zeta}\right) - \tilde{t}\right)\sin\alpha\right]^{2} + \left[\rho\left(\tilde{\zeta}\right)\sin\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) - L\right]^{2}}$$
(2.20)

und für den dem Wert $\tilde{\zeta}$ der Veränderlichen ζ entsprechenden Wert der Veränderlichen ξ_1

$$\tilde{\xi}_{1} = \frac{T_{1}}{2\pi} \arctan \frac{\rho(\tilde{\zeta}) \sin\left(\tilde{\zeta} + \frac{2\pi}{T}\xi(\tilde{\zeta})\right) - L}{\rho(\tilde{\zeta}) \cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi(\tilde{\zeta})\right) \cos\alpha + (\xi(\tilde{\zeta}) - \tilde{t}) \sin\alpha}.$$
(2.21)

Zu ermitteln ist noch die Konstante \tilde{c} :

$$\tilde{c} = \tilde{z}_{1} - \tilde{\xi}_{1} = -\rho\left(\tilde{\zeta}\right) \cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) \sin\alpha + \left(\xi\left(\tilde{\zeta}\right) - \tilde{t}\right) \cos\alpha - \frac{\Gamma_{1}}{2\pi} \arctan\frac{\rho\left(\tilde{\zeta}\right) \sin\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) - L}{\rho\left(\tilde{\zeta}\right) \cos\left(\tilde{\zeta} + \frac{2\pi}{T}\xi\left(\tilde{\zeta}\right)\right) \cos\alpha + \left(\xi\left(\tilde{\zeta}\right) - \tilde{t}\right) \sin\alpha}.$$
(2.22)

Kennt man \tilde{r} und \tilde{c} , so können die Gleichungen der Linie (2.14) im Koordinatensystem Oxyz ermittelt werden, indem man die Formeln (2.1) auf (2.14) anwendet:

$$\begin{cases} \mathbf{x}_{i}\left(\xi_{1}\right) = \tilde{r}\cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right)\cos\alpha - \left(\xi_{1} + \tilde{c}\right)\sin\alpha\\ \mathbf{y}_{i}\left(\xi_{1}\right) = \tilde{r}\sin\left(\frac{2\pi}{T_{1}}\xi_{1}\right) + L\\ \mathbf{z}_{i}\left(\xi_{1}\right) = \tilde{r}\cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right)\sin\alpha + \left(\xi_{1} + \tilde{c}\right)\cos\alpha + \tilde{t} \end{cases}$$

$$(2.23)$$

Gleichungen (2.23) definieren die Schraubenlinie (2.14) im Koordinatensystem Oxyz bei der Verschiebung \tilde{t} des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem letzteren.

Um zu Gleichungen zu gelangen, die die Schraubenlinie (2.14) bei jeder beliebigen Verschiebung *t* des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem O x y z in letzterem definieren, erinnern wir

uns daran, dass einem Zuwachs $t - \tilde{t}$ des Parameters t die von den Ausdrücken (2.7) bestimmten Zuwächse der Koordinaten eines beliebigen Punkts der zu ermittelnden Schraubenfläche entsprechen. Es sollen somit bei einer beliebigen Verschiebung t des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem Oxyz für die Schraubenlinie (2.14) im Koordinatensystem Oxyz die Gleichungen (2.24) gelten. Dabei werden \tilde{r} und \tilde{c} durch die Ausdrücke (2.20) bzw. (2.22) ersetzt.

Mit den Gleichungen (2.24), lassen sich bei beliebiger Verschiebung *t* des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem O x y z die Koordinaten eines beliebigen Punkts der Schraubenlinie (2.14) im Koordinatensystem O x y z errechnen.

Fixieren wir einen beliebigen Wert t_0 für die Verschiebung t und einen Wert z_0 für die Koordinate z, so lassen sich aus der Dritten der Gleichungen (2.24) die entsprechenden Werte der Veränderlichen ξ_1 ermitteln¹. Kennt man diese, so ermittelt man aus denselben Gleichungen die Abszissen und Ordinaten der Schnittpunkte der Ebene $z = z_0$ und der Schraubenlinie (2.14) beim festen Wert t_0 der Verschiebung:

$$\begin{aligned} x_{t}(\xi_{1}) &= x_{\tilde{t}}(\xi_{1}) - k\frac{T_{t}}{T}(t-\tilde{t})\sin\alpha = \\ &= \tilde{r}\cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right)\cos\alpha - (\xi_{1}+\tilde{c})\sin\alpha - k\frac{T_{t}}{T}(t-\tilde{t})\sin\alpha \\ y_{t}(\xi_{1}) &= y_{\tilde{t}}(\xi_{1}) = \tilde{r}\sin\left(\frac{2\pi}{T_{1}}\xi_{1}\right) + L \\ z_{t}(\xi_{1}) &= z_{\tilde{t}}(\xi_{1}) + \left(1 - k\frac{T_{1}}{T}\cos\alpha\right)(t-\tilde{t}) = \\ &= \tilde{r}\cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right)\sin\alpha + (\xi_{1}+\tilde{c})\cos\alpha + \tilde{t} + \left(1 - k\frac{T_{1}}{T}\cos\alpha\right)(t-\tilde{t}) = \\ &= \tilde{r}\cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right)\sin\alpha + (\xi_{1}+\tilde{c})\cos\alpha + \left(1 - k\frac{T_{1}}{T}\cos\alpha\right)t + k\frac{T_{1}}{T}\tilde{t}\cos\alpha \end{aligned}$$
(2.24)

Ersetzt man in den ersten beiden Gleichungen von (2.3) ξ durch z_0 , so ergeben sich die Gleichungen des Schnittgebildes derselben Ebene und der gegebenen Schraubenfläche. Für jeden der ermittelten Schnittpunkte

¹Näherungsweise, jedoch mit hinreichender Genauigkeit.

kann, wie es in [1] ausführlich beschrieben wurde, überprüft werden, ob dieser Punkt inner- oder außerhalb des betreffenden Schnittgebildes liegt und ob die betreffende Schraubenlinie dementsprechend ausgesondert werden soll oder (nach einer hinreichenden Anzahl Prüfungen (Tests) ohne negative Ergebnisse) akzeptiert werden kann. Um der Tauglichkeit der der Prüfung unterworfenen Schraubenlinie sicher zu sein, müssen Tests bei mehreren Werten von z₀ für mehrere Werte der Verschiebung t durchgeführt werden. Das ist zwar aufwändig, jedoch notwendig.

Wir wollen jetzt für alle tauglichen Schraubenlinien die Koordinaten x_1 und y_1 ihrer Schnittpunkte mit beliebiger Ebene $z = z_{10} = \text{const}$ bei beliebigem $t = t_0 = \text{const}$ ermitteln. Sowohl die Koordinate z_{10} als auch der Wert t_0 des Parameters t müssen jedoch für alle betrachteten Schraubenlinien dieselben bleiben. Wie solch eine Reduktion ausgeführt werden kann, zeigen wir am Beispiel der Linie (2.14). Gelten nämlich für \tilde{t} die Gleichungen (2.14), so gelten für t_0 , wie es aus (2.6) folgt, die Gleichungen

$$\begin{cases} x_{1} = \tilde{r} \cos\left(\frac{2\pi}{T_{1}}\xi_{1}\right) \\ y_{1} = \tilde{r} \sin\left(\frac{2\pi}{T_{1}}\xi_{1}\right) \\ z_{1} = \xi_{1} + \tilde{c} - k\frac{T_{1}}{T}(t_{0} - \tilde{t}) \end{cases}$$

$$(2.25)$$

Kennt man die Konstanten \tilde{r} und \tilde{c} , so kann aus der Dritten der Gleichungen (2.25) der der Koordinate z_{10} entsprechende Wert der Variablen ξ_1 ermittelt werden. Somit können die entsprechenden Werte x_{10} und y10 der Abszisse und der Ordinate des reduzierten Punkts errechnet werden. Verfügt man über eine ausreichend große Anzahl² von reduzierten Punkten, so kann der Stirnschnitt der zu ermittelnden Schraubenfläche mit hinreichender Genauigkeit wieder aufgebaut werden.

Es bleibt zu klären, ob das Problem der geometrischen Synthese von Verzahnungen mit parallelen Achsen ein Sonderfall des vorgestellten Problems ist. Um diese Frage zu beantworten, betrachten wir nochmals die Formel (2.11).

Verlaufen die Achsen der Zahnräder parallel zueinander, so gilt sin $\alpha = 0$. Division durch Null ist nicht erlaubt.

Wie in [1] gezeigt, muss gleichzeitig
$$|k| = \left| \frac{T}{T_1} \right|$$
 gelten. Im Fall $k = -\frac{T}{T_1}$ ist
 $T - kT_1 \cos \alpha = T + T \cos \alpha = T(1 + \cos \alpha)$ und $\frac{T - kT_1 \cos \alpha}{\sin \alpha} = \frac{T(1 + \cos \alpha)}{\sin \alpha} \xrightarrow[\alpha \to 0]{\alpha \to 0} \infty$. arccos x ist für
 $x \to \infty$ nicht definiert. Ist $k = \frac{T}{T_1}$ so gilt $T - kT_1 \cos \alpha = T - T \cos \alpha = T(1 - \cos \alpha)$ und
 $\frac{T - kT_1 \cos \alpha}{\sin \alpha} = \frac{T(1 - \cos \alpha)}{\sin \alpha} = T \tan \frac{\alpha}{2} \xrightarrow[\alpha \to 0]{\alpha \to 0} 0$. arccos $0 = \pm \frac{\pi}{2} \pm 2\pi N$ wobei N eine beliebige ganze

Zahl ist. Die in [1] gewonnenen Ausdrücke können jedoch auch andere Werte annehmen. Daraus folgt der Schluss, dass der Fall der parallelen Achsen gesondert betrachtet werden muss.

3. Ein Beispiel zur Anwendung des allgemeinen Verfahrens

Die Anwendung des entwickelten allgemeinen Verfahrens zeigen wir am Beispiel der Synthese einer Außenverzahnung von Schraubenrädern mit zueinander senkrechten Achsen. Eines dieser Zahnräder soll, wie im Beispiel aus [1], 45 Zähne haben, deren Stirnschnitt dem Bezugsprofil entsprechende Kreisevolventen darstellt. Die Zähne dieses Rades sollen eine Schraubenfläche mit Rechtswindung bilden, deren Anstieg auf dem Teilzylinder 45° ist. Diesem Anstieg entspricht ein Schraubengang von

 $\sin \alpha$

sinα

² Die Anzahl ist sinnvoll zu wählen.

 $T = 45 m \pi \tan 45^{\circ} \approx 1413716694 m.$

Darin bezeichnet *m* den im Stirnschnitt des Teilzylinders gemessenen und vom gewählten Schraubengang der Zähne unabhängigen Modul.

Das zweite Zahnrad, dessen Profil im Stirnschnitt zu ermitteln ist, soll dieselbe Zähnezahl und denselben Schraubengang haben und, wie das erste, mit Rechtswindung sein. Der Achsabstand soll 45m sein.

Aus der Abbildung 1 ist leicht ersichtlich, dass einer Verschiebung der $O_1 z_1$ Achse in positiver Richtung der

Oz Achse ("nach oben") eine Verschiebung der zu ermittelnden Schraubenfläche längs $O_1 z_1$ Achse in positiver Richtung dieser Achse entspricht. Dabei rotiert eine Schraubenfläche mit Rechtswindung (vom Zielpunkt des Vektors $\overrightarrow{O_1 z_1}$ aus betrachtet) im Uhrzeigersinn. Da die beiden Räder dieselbe Zähnezahl haben, muss die

Übersetzung k = -1 sein.

Sowohl alle das gegebene Zahnrad betreffenden geometrischen Größen als auch alle in (2.11) auftretenden Terme können, wie in [1] gezeigt, errechnet werden, wenn ebenda aufgezählte Fourierkoeffizienten vorhanden sind. Diese wurden in 4 ebenda erwähnten Dateien gespeichert.

Dem vorgestellten Lösungsplan entsprechend wurden für eine Reihe von Werten des Parameters t die in Frage kommenden Berührungspunkte ermittelt. Die Werte von t werden aus einem beliebigen Intervall

$$t_{0} \leq t \leq t_{0} + \frac{T}{n}$$

$$(3.1)$$

gewählt, wobei T und n den Schraubengang bzw. die Zähnezahl des gegebenen Zahnrades bezeichnen. Der Menge der Werte t aus (3.1) entspricht genau die Menge aller möglichen gegenseitigen Anordnungen der Mantelflächen des gegebenen und des zu profilierenden Zahnrades. Im betrachteten Falle gilt

$$\frac{T}{n} = m\pi.$$

Für die Berechnungen wurden 20 im Intervall $0 \le t < \pi m$ gleichförmig verteilte Werte des Parameters *t* ausgewählt.

Die Ergebnisse dieser Berechnungen sind in Tabellen $1 \div 6$ zusammengefasst, von denen jede neben dem obenerwähnten Satz der Werte des Parameters *t* die entsprechenden Werte der Bogenlänge *I* und der Veränderlichen ξ sowie die Koordinaten *x* und *y* für die ermittelten Berührungspunkte enthält. Jede einzelne Tabelle enthält die zu einer Flanke eines Zahnes des gegebenen Zahnrades gehörenden Berührungspunkte betreffenden Daten. Daraus wird ersichtlich, dass bei jeder möglichen gegenseitigen Anordnung der Zahnräder

der Kontakt im Unterschied von Verzahnungen mit parallelen Achsen nicht entlang einer Linie, sondern nur in einzelnen Punkten stattfinden kann. Im betrachteten Falle berühren sich gleichzeitig mindestens 3 Zähne. Dies kann aus den ermittelten Werten des Parameters / leicht festgestellt werden.

Nachdem diese potentiellen Berührungspunkte ermittelt worden sind, muss sichergestellt werden, dass sich die beiden Räder nicht durchdringen. Dies konnte mittels des oben angeführten Verfahrens überprüft werden. Alle in den Tabellen 1÷6 angeführten Punkte wurden einer entsprechenden Überprüfung unterzogen und für gültig befunden.

Abbildung 2 zeigt verhältnistreu Fragmente sowohl des Schnittgebildes der gegebenen Schraubenfläche und der den Punkt 60 enthaltenden, zur *Oz* Achse senkrechten Ebene, als auch der Laufbahn des Schnittpunkts dieser Ebene und durch den Punkt 60 verlaufenden, zur gesuchten Schraubenfläche gehörenden Schraubenlinie. Die beiden Kurven unterscheiden sich deutlich voneinander. Der kleine Strich am untersten Rand der Abbildung stellt ein Zehntel des Moduls der Zähne dar. Die Abbildung 3 zeigt dasselbe für den Punkt 122.

Jedem der 120 ermittelten Punkte entspricht eine der zu ermittelnden Schraubenfläche gehörende Schraubenlinie. Alle diese Schraubenlinien sind, wie beschrieben, auf entsprechende Punkte einer fixierten, der Achse $O_1 z_1$ senkrechten Ebene bei festem Wert des Parameters *t* reduziert worden. Die Ergebnisse dieser Redukti-

on sind in Tabellen 7 ÷ 12 zusammengefasst. Die Nummern der Punkte in diesen Tabellen stimmen mit denen in Tabellen 1 ÷ 6 überein. Der Polarwinkel ζ_1 ist im Bogenmaß angegeben.

Mittels des in [1] angeführten Verfahrens kann man sich davon überzeugen, dass die Punkte, deren Koordinaten in den Tabellen $1 \div 6$ zusammengefasst sind, jeweils nahe an einer Geraden liegen. Es wurde für jede dieser Tabellen die durch den ersten und den letzten Punkte verlaufende Gerade ermittelt. Die größte der errechneten Abweichungen beträgt 0,0028*m*, wobei *m* den Modul der Verzahnung bezeichnet.

Punkt №	t/m	I/m	$\xi/m = z/m$	x/m	y/m
1	0,000000000	66,3100297852	1,4725396199	1,4734057392	23,0362501142
2	0,1570796327	66,2755249023	1,5557441730	1,4000798004	23,0092726588
3	0,3141592654	66,2405883789	1,6379207512	1,3280472223	22,9815178433
4	0,4712388980	66,2072631836	1,7214245323	1,2541851928	22,9547159414
5	0,6283185307	66,1740112305	1,8046652565	1,1806825471	22,9279875610
6	0,7853981634	66,1412475586	1,8894655375	1,1055352010	22,9017460843
7	0,9424777961	66,1086547852	1,9721619696	1,0325460471	22,8747674691
8	1,0995574290	66,0760375977	2,0556860886	0,9588500191	22,8481477066
9	1,2566370610	66,0435668945	2,1384239318	0,8859772203	22,8208018082
10	1,4137166940	66,0116088867	2,2219615191	0,8122282395	22,7939827095
11	1,5707963270	65,9806030273	2,3067408892	0,7370017316	22,7679904016
12	1,7278759590	65,9493530273	2,3899746515	0,6635079838	22,7409583434
13	1,8849555920	65,9181274414	2,4723093506	0,5910161508	22,7137324094
14	2,0420352250	65,8874145508	2,5558789589	0,5172061797	22,6869445160
15	2,1991148580	65,8567993164	2,6389930886	0,4439220885	22,6600111815
16	2,3561944900	65,8270385742	2,7237334822	0,3688110424	22,6338145974
17	2,5132741230	65,7967407227	2,8057621222	0,2967051297	22,6064758251
18	2,6703537560	65,7677124023	2,8903942697	0,2216486207	22,5800638208
19	2,8274333880	65,7383178711	2,9737583955	0,1480925283	22,5531930451
20	2,9845130210	65,7093872070	3,0574415641	0,0741575339	22,5265858212

Tabelle 1

Punkt №	t/m	I/m	$\xi/m = z/m$	x/m	y/m
21	0,000000000	72,0761948242	-0,0009930579	0,000748789	22,4995893957
22	0,1570796327	72,0475659180	0,0812461081	-0,0716477056	22,4724412023
23	0,3141592654	72,0194291992	0,1647498418	-0,1453774641	22,4455996818
24	0,4712388980	71,9918051758	0,2489691120	-0,2198977476	22,4191451417
25	0,6283185307	71,9642221680	0,3329177650	-0,2940628198	22,3924653719
26	0,7853981634	71,9368442383	0,4156985024	-0,3670329195	22,3654277828
27	0,9424777961	71,9099790039	0,4989768517	-0,4405754661	22,3386723280
28	1,0995574290	71,8835239258	0,5831061003	-0,5150018156	22,3119631266
29	1,2566370610	71,8569868164	0,6650648162	-0,5871447001	22,2848010059
30	1,4137166940	71,8307163086	0,7491268736	-0,6613794532	22,2581471665
31	1,5707963270	71,8051020508	0,8325950610	-0,7351387498	22,2314098073
32	1,7278759590	71,7795288086	0,9161485291	-0,8088997109	22,2045308588
33	1,8849555920	71,7544682617	1,0002990766	-0,8833277374	22,1779061462
34	2,0420352250	71,7296127930	1,0829498051	-0,9562367995	22,1509822717
35	2,1991148580	71,7052290039	1,1667834501	-1,0303708846	22,1241661298
36	2,3561944900	71,6805581055	1,2489292277	-1,1026635158	22,0972109545
37	2,5132741230	71,6566870117	1,3333499293	-1,1773596950	22,0705121433
38	2,6703537560	71,6328979492	1,4177089352	-1,2519349871	22,0438469056
39	2,8274333880	71,6093959961	1,4998781939	-1,3243426322	22,0169171606
40	2,9845130210	71,5863452148	1,5833887761	-1,3981211558	21,9901106471

Tabelle 2

410,0000000077,9588032227-1,4748964792-1,471632977721,96328420,157079632777,9362651367-1,3901358012-1,546623732021,93657430,314159265477,9140141602-1,3079873495-1,619038087621,90965440,471238898077,8918657227-1,2249975688-1,692231863621,88280450,628318530777,8701479492-1,1413195319-1,766144700021,85605460,785398163477,8487993164-1,0577708844-1,839942380421,82918470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6682343750-0,3084949065-2,501427527321,58787552,199114858077,6692343750-0,3084949065-2,501427527321,58787	1
420,157079632777,9362651367-1,3901358012-1,546623732021,93657430,314159265477,9140141602-1,3079873495-1,619038087621,90965440,471238898077,8918657227-1,2249975688-1,692231863621,88280450,628318530777,8701479492-1,1413195319-1,766144700021,85605460,785398163477,8701479492-1,1413195319-1,766144700021,85605470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7661289063-0,7225952303-2,136064110621,72202511,413716694077,7661289063-0,555566363-2,207910178721,69521521,727875959077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	48116
430,314159265477,9140141602-1,3079873495-1,619038087621,90965440,471238898077,8918657227-1,2249975688-1,692231863621,88280450,628318530777,8701479492-1,1413195319-1,766144700021,85605460,785398163477,8487993164-1,0577708844-1,839942380421,82918470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,72802501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7072304688-0,4724720191-2,356917222721,64145542,04203525077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	90965
440,471238898077,8918657227-1,2249975688-1,692231863621,88280450,628318530777,8701479492-1,1413195319-1,766144700021,85605460,785398163477,8487993164-1,0577708844-1,839942380421,82918470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,74881501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6820820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	18962
450,628318530777,8701479492-1,1413195319-1,766144700021,85605460,785398163477,8487993164-1,0577708844-1,839942380421,82918470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,72802501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6820820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	46549
460,785398163477,8487993164-1,0577708844-1,839942380421,82918470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,74881501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	13269
470,942477796177,8276352539-0,9736974328-1,914237193421,80247481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,74881501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	55224
481,099557429077,8070249023-0,8896904308-1,988525570921,77565491,256637061077,7861679688-0,8078510778-2,060559156421,74881501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	01054
491,256637061077,7861679688-0,8078510778-2,060559156421,74881501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	46105
501,413716694077,7661289063-0,7225952303-2,136064110621,72202511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	16139
511,570796327077,7460664063-0,6410088403-2,207910178721,69521521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	88013
521,727875959077,7264726563-0,555566363-2,283551099321,66834531,884955592077,7072304688-0,4724720191-2,356917222721,64145542,042035225077,6880820313-0,3888684524-2,430747552021,61472552,199114858077,6692343750-0,3084949065-2,501427527321,58787	20559
53 1,8849555920 77,7072304688 -0,4724720191 -2,3569172227 21,64145 54 2,0420352250 77,6880820313 -0,3888684524 -2,4307475520 21,61472 55 2,1991148580 77,6692343750 -0.3084949065 -2,5014275273 21,58787	12241
54 2,0420352250 77,6880820313 -0,3888684524 -2,4307475520 21,61472 55 2,1991148580 77,6692343750 -0.3084949065 -2,5014275273 21,58787	95591
55 2,1991148580 77,6692343750 -0,3084949065 -2,5014275273 21,58787	44926
	95158
56 2,3561944900 77,6508867188 -0,2228071100 -2,5773118547 21,56093	81556
57 2,5132741230 77,6325820313 -0,1401834955 -2,6501819330 21,53418	11146
58 2,6703537560 77,6146757813 -0,0569253440 -2,7236912125 21,50740	32046
59 2,8274333880 77,5968398438 0,0257818367 -2,7966385516 21,48078	81515
60 2,9845130210 77,5794492188 0,1114054015 -2,8724275570 21,45398	20697

Tabelle 3

Punkt №	t/m	I/m	$\xi/m = z/m$	x/m	y/m
81	0,000000000	62,9538731934	2,2118375048	2,2078800679	21,6951905475
82	0,1570796327	62,9338068848	2,2933824240	2,1360769323	21,7220226963
83	0,3141592654	62,9134165527	2,3772188821	2,0620380983	21,7487307008
84	0,4712388980	62,8929104980	2,4604868406	1,9885297539	21,7756507377
85	0,6283185307	62,8722887207	2,5446766026	1,9140660004	21,8024674210
86	0,7853981634	62,8511346191	2,6285890500	1,8399264446	21,8291902529
87	0,9424777961	62,8297953613	2,7121597566	1,7661016207	21,8560182338
88	1,0995574290	62,8080626465	2,7957823258	1,6922517439	21,8828311179
89	1,2566370620	62,7859133301	2,8789496396	1,6188855423	21,9096947790
90	1,4137166940	62,7636714355	2,9609150364	1,5466442998	21,9365723153
91	1,5707963270	62,7411286621	3,0457591609	1,4715745770	21,9633005929
92	1,7278759600	62,7181461426	3,1288281270	1,3982894500	21,9900659428
93	1,8849555920	62,6950941895	3,2123599569	1,3244910173	22,0168784101
94	2,0420352250	62,6715793457	3,2947429543	1,2518805090	22,0438655941
95	2,1991148580	62,6477867676	3,3792409728	1,1771709574	22,0705599878
96	2,3561944900	62,6239247559	3,4634653563	1,1026627411	22,0972118931
97	2,5132741230	62,5996229980	3,5468205708	1,0290604111	22,1239998657
98	2,6703537560	62,5748814941	3,6292047159	0,9564669341	22,1509271634
99	2,8274333890	62,5500242676	3,7119829247	0,8834349032	22,1779007516
100	2,9845130210	62,5249587402	3,7961502687	0,8089913934	22,2045114586

Tabelle 4

Punkt №	t/m	I/m	$\xi/m = z/m$	x/m	y/m
101	0,000000000	68,8948330566	0,7381968721	0,7351477663	22,2314078876
102	0,1570796327	68,8688417480	0,8207959803	0,6623735957	22,2583531878
103	0,3141592654	68,8429661621	0,9055533354	0,5873198057	22,2847797582
104	0,4712388980	68,8167896973	0,9883101668	0,5142652056	22,3117458924
105	0,6283185307	68,7899651855	1,0716150834	0,4407795024	22,3386328042
106	0,7853981634	68,7630943848	1,1550156706	0,3671179536	22,3654122657
107	0,9424777961	68,7357144043	1,2378648526	0,2940807330	22,3924648881
108	1,0995574290	68,7081261230	1,3219042983	0,2198270970	22,4191589291
109	1,2566370620	68,6800749512	1,4048785497	0,1466947683	22,4459999166
110	1,4137166940	68,6523709473	1,4895310923	0,0716709710	22,4724377610
111	1,5707963270	68,6237411621	1,5717701438	-0,0007250753	22,4995845818
112	1,7278759600	68,5955048340	1,6557226792	-0,0750689814	22,5262313656
113	1,8849555920	68,5665741699	1,7396926912	-0,1492926254	22,5528536288
114	2,0420352250	68,5367773438	1,8218837298	-0,2215346325	22,5800412291
115	2,1991148580	68,5073242188	1,9055715711	-0,2954967892	22,6068578739
116	2,3561944900	68,4774414063	1,9886604778	-0,3688103940	22,6338257867
117	2,5132741230	68,4476757813	2,0734902587	-0,4440100408	22,6600363987
118	2,6703537560	68,4170507813	2,1567523017	-0,5174393839	22,6869436259
119	2,8274333880	68,3863476563	2,2401942983	-0,5911243973	22,7137357808
120	2,9845130210	68,3551367188	2,3222760154	-0,6633651001	22,7409352410

Tab	elle	5

Punkt №	t/m	I/m	$\xi/m = z/m$	x/m	y/m
121	0,000000000	74,7193342285	-0,7359564189	-0,7369856694	22,7679895433
122	0,1570796327	74,6878808105	-0,6523067306	-0,8109168239	22,7945042983
123	0,3141592654	74,6563811035	-0,5677879513	-0,8858124923	22,8207530308
124	0,4712388980	74,6243490723	-0,4842434987	-0,9596526121	22,8476187290
125	0,6283185307	74,5918772949	-0,4014817855	-1,0326460036	22,8746266262
126	0,7853981634	74,5586648926	-0,3179838836	-1,1062234564	22,9018018792
127	0,9424777961	74,5259385254	-0,2341119327	-1,1804326178	22,9279388827
128	1,0995574290	74,4926798340	-0,1507672056	-1,2540397115	22,9546885912
129	1,2566370610	74,4583333496	-0,0681839481	-1,3266107524	22,9824837490
130	1,4137166940	74,4249126465	0,0163891211	-1,4015961878	23,0084253171
131	1,5707963270	74,3910753418	0,0989930841	-1,4745804325	23,0355006479
132	1,7278759590	74,3553633301	0,1818349123	-1,5472061033	23,0631278410
133	1,8849555920	74,3213408691	0,2663595489	-1,6222373990	23,0888495646
134	2,0420352250	74,2867629395	0,3497038687	-1,6959936686	23,1152758797
135	2,1991148580	74,2504491699	0,4320802609	-1,7682850843	23,1434591915
136	2,3561944900	74,2146445801	0,5152640993	-1,8416458578	23,1703835400
137	2,5132741230	74,1800435059	0,5991384032	-1,9162659982	23,1962984955
138	2,6703537560	74,1435214355	0,6839607527	-1,9911910876	23,2222640500
139	2,8274333880	74,1064670410	0,7672005256	-2,0644638604	23,2493624992
140	2,9845130210	74,0688340332	0,8478597837	-2,1350635881	23,2780337030

Abbildung 2

Abbildung 3

Für jede der Tabellen $7 \div 12$ ist mit Hilfe des im Anhang geschilderten Verfahrens in guter Näherung eine Kreisevolvente ermittelt worden. Es sind der Radius des Grundkreises, dessen Mittelpunkt mit dem Ursprung des Koordinatensystems übereinstimmt, sowie ein dem Anfangspunkt der Evolvente entsprechender Polarwinkel errechnet worden. Dabei wird die Summe der Quadrate der Abweichungen der Punkte von der Evolvente minimiert. Der durchschnittliche Wert des Radius des Grundkreises hat sich als 21,142*m* erwiesen. Dies ent-

spricht nahezu dem in [1] errechneten Wert. Der Radius des Teilzylinders wurde zu 22,501m berechnet. Auch

dies stimmt mit dem Stirnschnitt des gegebenen Zahnrads sehr gut überein.

Das war aufgrund der Symmetrie (senkrecht aufeinander stehende Achsen, gleiche Zähnezahl und gleicher Schraubengang bei beiden Rädern) auch zu erwarten und die Ergebnisse der Berechnung bekräftigen die Richtigkeit des entwickelten Verfahrens.

Es wurde anschaulich gezeigt, wie eine Verzahnung mit sich kreuzenden Achsen geometrisch synthetisiert werden kann. Dies bedeutet aber keineswegs, dass somit auch das Problem der Ermittlung des Profils beliebiger Wälzwerkzeuge für die Fertigung entsprechender Zahnräder gelöst wird. Dies stellt ein weiteres Problem dar.

Punkt	Kartesische k	Koordinaten	Polarkoor	dinaten
Nº	x ₁ /m	y ₁ /m	Winkel ζ_1	Radius $ ho_1/m$
1	1,4725396151	-21,9637498858	-1,5038524195	22,0130570790
2	1,4805126407	-21,9853686300	-1,5035570278	22,0351617076
3	1,4889109571	-22,0079314136	-1,5032458799	22,0582388451
4	1,4970272063	-22,0298983855	-1,5029462976	22,0807045480
5	1,5054154227	-22,0520123600	-1,5026355014	22,1033374113
6	1,5139262552	-22,0739624485	-1,5023193055	22,1258172930
7	1,5226504146	-22,0967803028	-1,5019968360	22,1491797599
8	1,5316904534	-22,1195087286	-1,5016605550	22,1724771291
9	1,5409666772	-22,1431660386	-1,5013172701	22,1967200395
10	1,5503609225	-22,1665704295	-1,5009686417	22,2207214914
11	1,5597037484	-22,1894386904	-1,5006213817	22,2441872222
12	1,5694431256	-22,2135122969	-1,5002609065	22,2688865943
13	1,5794846025	-22,2379840800	-1,4998889743	22,2940060903
14	1,5896413969	-22,2622892049	-1,4995121960	22,3189713117
15	1,6000743032	-22,2869548277	-1,4991250895	22,3443190379
16	1,6104850880	-22,3111557781	-1,4987383511	22,3692050456
17	1,6214383757	-22,3366607127	-1,4983325264	22,3954342267
18	1,6322156984	-22,3615256193	-1,4979334004	22,4210159473
19	1,6434550560	-22,3870410942	-1,4975167777	22,4472838775
20	1,6548295931	-22,4125233394	-1,4970950214	22,4735325088

Tabelle 7

Punkt	Kartesische k	Koordinaten	Polarkoo	rdinaten
Nº	x ₁ /m	y ₁ /m	Winkel ζ ₁	Radius ρ_1/m
21	-1,4726235176	-22,4521682322	-1,6362918821	22,5004106262
22	-1,4644819352	-22,4800344477	-1,6358502950	22,5276864349
23	-1,4562039022	-22,5078379034	-1,6354039186	22,5548951869
24	-1,4477952402	-22,5354897647	-1,6349532757	22,5819487642
25	-1,4391277162	-22,5636166203	-1,6344909477	22,6094644689
26	-1,4302550878	-22,5923639240	-1,6340189696	22,6375912432
27	-1,4212527969	-22,6210633135	-1,6335425862	22,6656670968
28	-1,4120937136	-22,6499388627	-1,6330600029	22,6939141432
29	-1,4026243473	-22,6795693963	-1,6325629391	22,7229008505
30	-1,3929431000	-22,7088806295	-1,6320587059	22,7515614833
31	-1,3831795234	-22,7385235861	-1,6315512502	22,7805539983
32	-1,3731344044	-22,7685488491	-1,6310317548	22,8099170271
33	-1,3629585113	-22,7985290985	-1,6305079973	22,8392334582
34	-1,3525434853	-22,8291060295	-1,6299736011	22,8691376310
35	-1,3419780652	-22,8597589282	-1,6294338500	22,8991153406
36	-1,3310197406	-22,8908752316	-1,6288772305	22,9295395160
37	-1,3200170902	-22,9218496056	-1,6283205144	22,9598265338
38	-1,3087427762	-22,9530232491	-1,6277529744	22,9903041287
39	-1,2972316882	-22,9848143245	-1,6271751572	23,0213922165
40	-1,2855604805	-23,0166351021	-1,6265918917	23,0525086958

Tabelle 8

Punkt	Kartesische k	Koordinaten	Polarkoor	dinaten
Nº	x ₁ /m	y ₁ /m	Winkel ζ_1	Radius ρ_1/m
41	-4,4689675183	-22,6471608732	-1,7656234044	23,0838810925
42	-4,4614354129	-22,6806272714	-1,7650234285	23,1152603137
43	-4,4537362417	-22,7147478235	-1,7644125591	23,1472576172
44	-4,4457855496	-22,7489984311	-1,7637916505	23,1793429323
45	-4,4376739248	-22,7833498238	-1,7631648232	23,2115053165
46	-4,4293924577	-22,8180717448	-1,7625295200	23,2440081676
47	-4,4208806192	-22,8528539852	-1,7618857821	23,2765358402
48	-4,4122417972	-22,8879760604	-1,7612357320	23,3093827850
49	-4,4032654348	-22,9235932208	-1,7605693099	23,3426620727
50	-4,3942178516	-22,9590640322	-1,7599029700	23,3757945697
51	-4,3848870745	-22,9951731578	-1,7592215255	23,4095113835
52	-4,3753935584	-23,0312036436	-1,7585358476	23,4431314048
53	-4,3657038066	-23,0677156809	-1,7578401067	23,4771990762
54	-4,3557589534	-23,1042802783	-1,7571353059	23,5112824669
55	-4,3455907310	-23,1415499370	-1,7564176957	23,5460292255
56	-4,3352687245	-23,1785744703	-1,7556977013	23,5805188533
57	-4,3246681091	-23,2160017883	-1,7549650885	23,6153656184
58	-4,3138759474	-23,2536154131	-1,7542252348	23,6503732628
59	-4,3028206898	-23,2913784799	-1,7534754992	23,6854929732
60	-4,2915891613	-23,3292085213	-1,7527201648	23,7206599351

Tabelle 9

Punkt	Kartesische k	Koordinaten	Polarkoo	rdinaten
Nº	x ₁ /m	y ₁ /m	Winkel ζ_1	Radius ρ_1/m
81	2,9712700270	-23,2202050634	-1,4435274070	23,4095358511
82	2,9827926416	-23,1847140379	-1,4428457557	23,3757998144
83	2,9940844366	-23,1497990788	-1,4421751068	23,3426163702
84	3,0051278977	-23,1148591246	-1,4415129753	23,3093866507
85	3,0158997704	-23,0803443342	-1,4408628900	23,2765535681
86	3,0265196112	-23,0461267032	-1,4402191181	23,2440051837
87	3,0369040773	-23,0120159886	-1,4395841970	23,2115416600
88	3,0471056453	-22,9781597002	-1,4389567627	23,1793156936
89	3,0571350149	-22,9444550774	-1,4383358212	23,1472264709
90	3,0669021020	-22,9109063717	-1,4377252973	23,1152659357
91	3,0764669049	-22,8779454130	-1,4371251615	23,0838695832
92	3,0858720320	-22,8450678723	-1,4365307398	23,0525428595
93	3,0950134157	-22,8124258316	-1,4359474284	23,0214222055
94	3,1039999780	-22,7797841880	-1,4353692129	22,9902888959
95	3,1127962137	-22,7478002596	-1,4348015265	22,9597891306
96	3,1213353128	-22,7160960049	-1,4342451005	22,9295388493
97	3,1297199708	-22,6844540006	-1,4336942571	22,8993362437
98	3,1379496217	-22,6528761270	-1,4331490575	22,8691828593
99	3,1459339368	-22,6215326989	-1,4326144721	22,8392347066
100	3,1537308937	-22,5908617435	-1,4320906945	22,8099332060
		Tabelle 10		

Punkt №	Kartesische Koordinaten		Polarkoordinaten	
	x ₁ /m	y ₁ /m	Winkel ζ_1	Radius ρ_1/m
101	-0,0091372936	-22,7805539422	-1,5711974274	22,7805557747
102	0,0025532180	-22,7513299085	-1,5706841040	22,7513300517
103	0,0138678560	-22,7229132213	-1,5701860241	22,7229174531
104	0,0250044257	-22,6941316628	-1,5696945259	22,6941454377
105	0,0360395486	-22,6656739623	-1,5692062784	22,6657026146
106	0,0467817805	-22,6375570782	-1,5687297737	22,6376054167
107	0,0573959026	-22,6093919215	-1,5682577455	22,6094647736
108	0,0677682650	-22,5818340500	-1,5677953278	22,5819357363
109	0,0779987955	-22,5543523846	-1,5673380814	22,5544872543
110	0,0878109902	-22,5275186713	-1,5668984033	22,5276898117
111	0,0976408074	-22,5002036816	-1,5664568019	22,5004154393
112	0,1070392003	-22,4736295541	-1,5660334828	22,4738844601
113	0,1163822141	-22,4473146880	-1,5656116901	22,4476163884
114	0,1257210839	-22,4206871478	-1,5651890158	22,4210396273
115	0,1346534297	-22,3946612030	-1,5647836524	22,3950660178
116	0,1434387532	-22,3687338827	-1,5643839483	22,3691937760
117	0,1519213561	-22,3437754969	-1,5639971619	22,3442919681
118	0,1686098121	-22,2933620911	-1,5632332416	22,2939996994
119	0,1766989393	-22,2682127545	-1,5628614632	22,2689137997
120	0,1603931803	-22,3183902922	-1,5636098578	22,3189666250

Tabelle 11

Punkt №	Kartesische Koordinaten		Polarkoordinaten	
	x ₁ /m	y ₁ /m	Winkel ζ_1	Radius ρ_1/m
121	-2,9129607462	-22,0526320535	-1,7021273187	22,2441884724
122	-2,9020447328	-22,0299178849	-1,7017741495	22,2202417999
123	-2,8914374542	-22,0076445005	-1,7014314223	22,1967751489
124	-2,8809161533	-21,9850236457	-1,7010938505	22,1729777564
125	-2,8705424825	-21,9625276659	-1,7007614317	22,1493258503
126	-2,8601985368	-21,9400792263	-1,7004293566	22,1257273807
127	-2,8503810575	-21,9188405985	-1,7001131346	22,1033989548
128	-2,8406534619	-21,8972545017	-1,6998023343	22,0807397250
129	-2,8308049799	-21,8749335024	-1,6994897362	22,0573382929
130	-2,8216428385	-21,8545238582	-1,6991962594	22,0359225216
131	-2,8126204449	-21,8333369600	-1,6989130186	22,0137556218
132	-2,8031780492	-21,8118957420	-1,6986117383	21,9912847064
133	-2,7946870971	-21,7923860691	-1,6983416152	21,9708526588
134	-2,7862844707	-21,7724999503	-1,6980771574	21,9500600281
135	-2,7775357532	-21,7512317472	-1,6978045263	21,9278541444
136	-2,7692655450	-21,7313678316	-1,6975449077	21,9071034026
137	-2,7617452123	-21,7126248581	-1,6973123228	21,8875607332
138	-2,7537432718	-21,6940645860	-1,6970564221	21,8681398447
139	-2,7458669685	-21,6747550327	-1,6968100812	21,8479928400
140	-2,7381348591	-21,6543696365	-1,6965760225	21,8267979067

4. Der Fall eines Kreisevolventenprofils

Nachdem der allgemeine Fall der Synthese von Verzahnungen mit sich kreuzenden Achsen erörtert wurde, wenden wir uns dem speziellen Fall der Zahnräder mit Kreisevolventenprofil zu. Sei

$$\rho = \rho(\zeta) \tag{4.1}$$

die Gleichung in Polarkoordinaten einer Evolvente des Kreises mit Radius r und dem Pol als Mittelpunkt. In (4.1) bedeutet ζ den Polarwinkel und ρ den Polarradius des laufenden Punkts der Evolvente. Wechseln wir jetzt vom expliziten Ausdruck (4.1) zur Parameterdarstellung

$$\begin{cases} \rho = \rho(\phi) = r\sqrt{1+\phi^2} \\ \zeta = \zeta(\phi) = \phi - \arctan\phi + \zeta_0 \end{cases}$$
(4.2)

mit dem Wälzwinkel ϕ als Parameter, wobei ζ_0 der dem Anfangspunkt der Evolvente entsprechende Polarwinkel ist. Nehmen wir an, dass $\rho'(\zeta) > 0$ ist. Dann folgt

$$\rho'(\zeta) = \frac{\frac{d\rho}{d\phi}}{\frac{d\zeta}{d\phi}} = \frac{\frac{r\phi}{\sqrt{1+\phi^2}}}{1-\frac{1}{1+\phi^2}} = \frac{\frac{r\phi}{\sqrt{1+\phi^2}}}{\frac{\phi^2}{1+\phi^2}} = \frac{r\sqrt{1+\phi^2}}{\phi},$$

$$\arctan\frac{\rho'(\zeta)}{\phi} = \frac{\pi}{1-\frac{1}{1+\phi^2}} = \frac{\pi}{1+\phi^2} - \arctan\phi = \operatorname{arccot}\phi,$$

$$(4.3)$$

$$\arctan \frac{\rho'(\zeta)}{\rho(\zeta)} = \frac{\pi}{2} - \arctan \phi = \operatorname{arccot} \phi,$$

 $\frac{r^2\left(1+\phi^2\right)}{2}$

$$\frac{\rho(\zeta)\rho'(\zeta)}{\sqrt{\left[\rho(\zeta)\right]^2 + \left[\rho'(\zeta)\right]^2}} = \frac{\frac{r(1+\phi)}{\phi}}{\frac{r(1+\phi^2)}{\phi}} = r , \qquad (4.4)$$

$$\arctan\frac{\rho'(\zeta)}{\rho(\zeta)} - \zeta = \frac{\pi}{2} - \arctan\phi - \phi + \arctan\phi - \zeta_0 = \frac{\pi}{2} - \phi - \zeta_0.$$
(4.5)

Aus (2.11) folgt unter Berücksichtigung von (4.4) und (4.5)

$$\xi(\phi) = \frac{T}{2\pi} \left\{ \arccos\left[-\frac{2\pi r \left(T - kT_1 \cos \alpha \right)}{kTT_1 \sin \alpha} \right] + \frac{\pi}{2} - \phi - \zeta_0 \right\}.$$
(4.6)

Somit gilt

$$\zeta + \frac{2\pi}{T} \xi(\phi) = \arccos \left[-\frac{2\pi r \left(T - kT_1 \cos \alpha \right)}{kTT_1 \sin \alpha} \right] + \arctan \frac{\rho'(\zeta)}{\rho(\zeta)} = = \arccos \left[-\frac{2\pi r \left(T - kT_1 \cos \alpha \right)}{kTT_1 \sin \alpha} \right] + \operatorname{arccot} \phi.$$
(4.7)

Weiterhin folgt

$$\rho\left(\zeta\right)\cos\left(\zeta+\frac{2\pi}{T}\xi\left(\phi\right)\right) = r\sqrt{1+\phi^{2}}\cos\left\{\arccos\left[-\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right] + \operatorname{arccot}\phi\right] = r\frac{\sqrt{1+\phi^{2}}}{\sqrt{1+\phi^{2}}}\left\{-\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\phi\pm\sqrt{1-\left[\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right]^{2}}\right\} =$$

$$= -r\left\{\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\phi\mp\sqrt{1-\left[\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right]^{2}}\right\}$$

$$(4.8)$$

und entsprechend

$$\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right) = -r\left\{\frac{2\pi r\left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha} \pm \sqrt{1 - \left[\frac{2\pi r\left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right]^{2}}\phi\right\}.$$
 (4.9)

Der besseren Lesbarkeit halber fassen wir (4.8), (4.9) und (4.6) zusammen und erhalten somit die Gleichungen des geometrischen Orts der potentiellen Berührpunkte der die Verzahnung bildenden Räder

$$x(\phi) = -r \left\{ \frac{2\pi r \left(T - kT_{1} \cos \alpha \right)}{kTT_{1} \sin \alpha} \phi \neq \sqrt{1 - \left[\frac{2\pi r \left(T - kT_{1} \cos \alpha \right)}{kTT_{1} \sin \alpha} \right]^{2}} \right\}$$

$$y(\phi) = -r \left\{ \frac{2\pi r \left(T - kT_{1} \cos \alpha \right)}{kTT_{1} \sin \alpha} \pm \sqrt{1 - \left[\frac{2\pi r \left(T - kT_{1} \cos \alpha \right)}{kTT_{1} \sin \alpha} \right]^{2}} \phi \right\}.$$

$$z(\phi) = \frac{T}{2\pi} \left\{ \arccos \left[-\frac{2\pi r \left(T - kT_{1} \cos \alpha \right)}{kTT_{1} \sin \alpha} \right] + \frac{\pi}{2} - \phi - \zeta_{0} \right\}$$

$$(4.10)$$

Der Parameter ϕ kommt in diesen Gleichungen nur in der ersten Potenz vor. Somit ist der geometrische Ort eine Gerade, was im Einklang mit den im vorigen Kapitel erhaltenen Ergebnissen steht. Man beachte, dass $z(\phi)$ nicht eindeutig bestimmt werden kann. Nämlich kann der Arkuskosinus in Gleichungen (4.10) nur bis auf das Vorzeichen und ein Vielfaches der Größe 2π bestimmt werden, der Winkel ζ_0 aber ist frei wählbar. So definieren die Gleichungen (4.10) mehrere Geraden (im oben angeführten Beispiel 6 Geraden). In diesen Gleichungen sind entweder die oberen oder die unteren Vorzeichen zu wählen.

Die eben erst gewonnenen Gleichungen sollen auf die in Tabellen 1÷6 zusammengefassten Punkte angewendet werden. Dies wurde am Beispiel der Tabelle 1 ausgeführt.

Unter den Voraussetzungen des im vorigen Kapitel erörterten Beispiels gilt

$$\frac{2\pi r (I - k T_1 \cos \alpha)}{k T T_1 \sin \alpha} = \frac{2\pi r}{k T_1} \approx -0,93969262,$$
$$\sqrt{1 - \left(\frac{2\pi r}{k T_1}\right)^2} \approx \pm 0,34202015,$$

arccos0,93969262≈0,34906585

Der in [1] errechnete Wert des Radius des Grundkreises ist $r \approx 21,143084m$. Man beachte noch die Bedingung $\rho'(\zeta) > 0$, die aussagt, dass der Grundkreis im Gegenuhrzeigersinn abgewickelt sein soll.

Um den der Zahnflanke entsprechenden Winkel ζ_0 zu ermitteln, deren Punkte Koordinaten in Tabelle 1 enthalten sind, verwenden wir wieder Ergebnisse aus [1]. Teilt man nämlich die dem Punkt 1 entsprechende Bogenlänge durch die Hälfte der einem Zahn entsprechenden Bogenlänge, so erhält man

Die betreffende Zahnflanke ist eine "ungerade" Zahnflanke, die bei der Entwicklung des Grundkreises im Gegenuhrzeigersinn entsteht. Dieser Zahnflanke gehen 10 Zähne voran. So erhält man für den zu ermittelnden Winkel im Bogenmaß

$$10 \times \frac{2\pi}{45} + 0,02000221 \approx 1,4162656,$$

wobei der letzte Summand nichts anderes als der Winkelabstand des Anfangspunkts der Evolvente von der Symmetrieachse der Zahnlücke ist.

Substituiert man die soeben gewonnenen Ausdrücke in (4.10), so entstehen die Gleichungen

$$\begin{cases} x(\phi) \approx 19,868 \,\phi - 7,2313608 \\ y(\phi) \approx 19,868 + 7,2313608 \,\phi \\ z(\phi) \approx -22,5 \,\phi + 11,330923 \end{cases}$$
(4.11)

einer den geometrischen Ort der eventuellen Berührungspunkte bildenden Geraden (Tabelle 1). Man sieht, dass $x(\phi)$ und $y(\phi)$ monoton steigende, $z(\phi)$ aber eine monoton fallende Funktion des Parameters ϕ sind, was im Einklang mit der Tabelle steht. Die errechneten Abweichungen der in Tabelle 1 zusammengefassten Punkte von der Geraden (4.11) stimmen gut mit den im vorigen Kapitel erwähnten Abweichungen überein. Letztere wurden für eine gewissermaßen willkürlich gewählte Gerade errechnet.

Nochmals soll betont werden, dass obwohl die Gerade (4.10) den geometrischen Ort der eventuellen Berührungspunkte explizit definiert, dies jedoch nur für eine und zwar "ungerade" Zahnflanke gilt. Im Vergleich mit der Verwendung von Fourierentwicklungen ist das ein bedeutender Nachteil.

Für den Fall eines gegebenen Kreisevolventenprofils entwickeln wir den expliziten Ausdruck für die Determinante (2.18).

Da diese Arbeit relativ aufwendig ist, wird sie schrittweise ausgeführt.

Wir ermitteln zunächst den Ausdruck für die zum ersten Element der dritten Zeile der Determinante gehörende Unterdeterminante. Man sieht, dass die Gleichung

$$\Delta_{31} = -\frac{2\pi}{T}\rho(\zeta)\sin\left[\arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right] = -\frac{2\pi}{T}\frac{\rho(\zeta)\rho'(\zeta)}{\sqrt{\left[\rho(\zeta)\right]^2 + \left[\rho'(\zeta)\right]^2}}$$

gilt.

Im Fall einer Kreisevolvente folgt hieraus unter der Voraussetzung $\rho'(\zeta) > 0$

$$\Delta_{31} = -\frac{2\pi r}{T},$$
(4.12)

wobei r der Radius des Grundkreises der Evolvente ist.

Wir führen jetzt die Bezeichnung $\beta = \arctan \frac{T_1}{2\pi L}$ ein. Somit kann die erste Spalte der Determinante als

$$\begin{pmatrix} -\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right)\cos\alpha + \sqrt{\frac{T_{1}^{2}}{4\pi^{2}}} + L^{2}\cos(\alpha + \beta) \\ \rho(\zeta)\cos\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right)\cos\alpha + (\xi(\phi) - t)\sin\alpha \\ -\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right)\sin\alpha + \sqrt{\frac{T_{1}^{2}}{4\pi^{2}}} + L^{2}\sin(\alpha + \beta) \end{pmatrix}$$

$$(4.13)$$

umgeschrieben werden. Dies führt zum Produkt

$$\tau_{1z} \Delta_{31} = \frac{2\pi r}{T} \left[\rho\left(\zeta\right) \sin\left(\zeta + \frac{2\pi}{T} \xi\left(\phi\right)\right) \sin\alpha - \sqrt{\frac{T_1^2}{4\pi^2} + L^2} \sin\left(\alpha + \beta\right) \right].$$
(4.14)

Wir benötigen noch die zum zweiten Element der dritten Zeile der Determinante gehörende Unterdeterminante. Die notwendigen Umformungen führen wir wieder in zwei Schritten aus. Wir stellen zunächst unter Berücksichtigung von (4.7) fest, dass für ein Kreisevolventen-Ausgangsprofil die Beziehung

$$\zeta + \frac{2\pi}{T} \xi(\phi) - \arctan \frac{\rho'(\zeta)}{\rho(\zeta)} = \arccos \left[-\frac{2\pi r \left(T - kT_1 \cos \alpha\right)}{kTT_1 \sin \alpha} \right]$$
(4.15)

gilt und folglich

$$\cos\left[\zeta + \frac{2\pi}{T}\xi(\phi) - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right] = -\frac{2\pi r(T - kT_1 \cos\alpha)}{kTT_1 \sin\alpha}$$
(4.16 a)

$$\sin\left[\zeta + \frac{2\pi}{T}\xi(\phi) - \arctan\frac{\rho'(\zeta)}{\rho(\zeta)}\right] = \pm \sqrt{1 - \left[\frac{2\pi r(T - kT_1 \cos \alpha)}{kTT_1 \sin \alpha}\right]^2}.$$
(4.16 b)

Letztere Formeln sind nur dann sinnvoll, wenn die Bedingung

$$\left|\frac{2\pi r\left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right| \leq 1$$
(4.17)

erfüllt ist.

Als nächsten Schritt führen wir (unter Berücksichtigung von (4.7)) die folgende Umformung aus

$$-\rho(\zeta)\sin\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right)\cos\alpha\cos\left\{\arccos\left[-\frac{2\pi r(T-kT_{1}\cos\alpha)}{kTT_{1}\sin\alpha}\right]\right\} + \rho(\zeta)\cos\left(\zeta + \frac{2\pi}{T}\xi(\phi)\right)\cos\alpha\sin\left\{\arccos\left[-\frac{2\pi r(T-kT_{1}\cos\alpha)}{kTT_{1}\sin\alpha}\right]\right\} = \rho(\zeta)\cos\alpha\sin\left\{\arccos\left[-\frac{2\pi r(T-kT_{1}\cos\alpha)}{kTT_{1}\sin\alpha}\right] - \zeta - \frac{2\pi}{T}\xi(\phi)\right\} = (4.18)$$
$$= -\rho(\zeta)\cos\alpha\sin(\arccos\phi) = -r\sqrt{1+\phi^{2}}\frac{1}{\sqrt{1+\phi^{2}}}\cos\alpha = -r\cos\alpha.$$

Der Ausdruck für die gesuchte Unterdeterminante ist somit

$$\mathcal{A}_{32} = -r\cos\alpha - \frac{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha} \sqrt{\frac{T_{1}^{2}}{4\pi^{2}} + L^{2}} \cos\left(\alpha + \beta\right) \pm \sqrt{1 - \left[\frac{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right]^{2}} \times \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha} = \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)} + \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha} = \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)} + \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha} = \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha\right)}{kTT_{1}\cos\alpha} = \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha} = \frac{1}{2\pi r \left(T - kT_{1}\cos\alpha} = \frac{1}{2\pi r \left($$

 $\left[\xi(\phi) - t \right] \sin \alpha$.

Bezeichnen wir jetzt

$$\arccos\left[-\frac{2\pi r \left(T-kT_{1}\cos\alpha\right)}{kTT_{1}\sin\alpha}\right] = \omega = \text{const}$$

und ersetzen $\xi(\phi)$ durch den rechten Teil der Gleichung (4.6), so ergibt sich

$$\Delta_{32} = -r\cos\alpha + \cos\omega\sqrt{\frac{T_1^2}{4\pi^2}} + L^2\cos(\alpha + \beta) + \left[\frac{T}{2\pi}\left(\frac{\pi}{2} + \omega - \phi - \zeta_0\right) - t\right]\sin\omega \cdot \sin\alpha.$$

Es gilt außerdem

$$\tau_{1z} \Delta_{31} = \frac{2\pi r}{T} \left[r \left(\phi \sin \omega + \cos \omega \right) \sin \alpha - \sqrt{\frac{T_1^2}{4\pi^2} + L^2} \sin \left(\alpha + \beta \right) \right].$$

So ist die Determinante

$$\Delta = \frac{2\pi r}{T} \left[r \left(\phi \sin \omega + \cos \omega \right) \sin \alpha - \sqrt{\frac{T_1^2}{4\pi^2} + L^2} \sin \left(\alpha + \beta \right) \right] +$$

$$r \cos \alpha - \sqrt{\frac{T_1^2}{4\pi^2} + L^2} \cos \omega \cdot \cos \left(\alpha + \beta \right) - \left[\frac{T}{2\pi} \left(\frac{\pi}{2} + \omega - \phi - \zeta_0 \right) - t \right] \sin \omega \cdot \sin \alpha .$$
(4.19)

Nochmals sei darauf hingewiesen, dass diese Beziehung nur für den Fall eines Kreisevolventenprofils im Stirnschnitt des Zahnrads gilt. Es ergibt sich die Gleichung

$$\left(\frac{4\pi^{2}r^{2}+T^{2}}{2\pi T}\phi+t\right)\sin\alpha\cdot\sin\omega-\sqrt{\frac{T_{1}^{2}}{4\pi^{2}}+L^{2}}\left[\frac{2\pi r}{T}\sin(\alpha+\beta)+\cos\omega\cdot\cos(\alpha+\beta)\right]+$$

$$\frac{2\pi r^{2}}{T}\cos\omega+r\cos\alpha-\frac{T}{2\pi}\left(\frac{\pi}{2}+\omega-\zeta_{0}\right)\sin\omega\cdot\sin\alpha=0.$$
(4.20)

Da

$$\frac{4\,\pi^2\,r^2+T^2}{2\,\pi\,T}\neq 0$$

gilt, folgt aus (4.20), dass ϕ bei $\sin \omega \neq 0$ eine lineare Funktion des Parameters *t* darstellt. Dies bedeutet wiederum, dass die Momentangeschwindigkeiten der Verschiebungen des momentanen Berührungspunkts entlang die Gerade (4.10) und des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem O x y z in konstantem Verhältnis bleiben. Dasselbe gilt für die Momentangeschwindigkeiten der Verschiebungen des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Verschiebungen des Koordinatensystems $O_1 x_1 y_1 z_1$ gegenüber dem Koordinatensystem O x y z und der Verschiebung der zu ermittelnden Schraubenfläche entlang die Achse $O_1 z_1$. So bewegt sich der momentane Berührpunkt relativ zur zu ermittelnden Schraubenfläche geradlinig. Es gibt folglich eine Gerade, die zur zu ermittelnden Schraubenfläche geradlinig. Es gibt folglich eine Gerade, die zur zu ermittelnden Schraubenfläche geradlinig. Te gerade in eine Schraubung mit jeweils Rechts- oder Linkswindung und dem Schraubengang T_1 um die Achse $O_1 z_1$, so erhält man die zu ermittelnde Schraubenfläche.

Wir kommen zum Schluss, dass ein zu einem Kreisevolventenprofil konjugiertes Profil immer die Laufbahn des Schnittpunkts einer in Schraubung versetzten Geraden mit einer der Achse dieser Schraubung orthogonalen Ebene darstellt. Es handelt sich um die Untersuchung der Kurven, die als Schnittgebilde solcher Art erzeugt worden sind.

Ist ρ der Abstand der in Schraubung versetzten Geraden von der Achse O_1z_1 , die die Achse der Schraubung sein soll, so ist ρ auch der Abstand der Projektion der betrachteten Geraden auf die Ebene $O_1 x_1 y_1$ vom Punkt O_1 . Sei ϕ der Winkel der Umdrehung der in Schraubung versetzten Geraden um die Achse O_1z_1 , *h* die entsprechende Verschiebung derselben Geraden längs derselben Achse. Da es sich um eine Schraubung handelt, muss die Gleichung

 $h = v \phi$

mit konstantem Faktor v gelten.

Da die in Schraubung versetzte Gerade einen konstanten Winkel mit der Achse $O_1 z_1$ bildet, ist auch der Abstand des der Achse am nächsten liegenden Punktes dieser Geraden vom Schnittpunkt der Geraden und der Ebene $O_1 x_1 y_1$ dem Winkel φ proportional. Dasselbe gilt für die Länge der Projektion der entsprechenden Strecke auf die Ebene $O_1 x_1 y_1$. Somit sind die Gleichungen der Laufbahn des erwähnten Schnittpunkts

$$\begin{cases} x_1 = \rho \cos \phi + w \phi \sin \phi \\ y_1 = \rho \sin \phi - w \phi \cos \phi \end{cases}$$
(4.21)

wobei *w* ein konstanter Faktor ist. Wenn $w = \rho$ gilt, stellen (4.21) nichts anderes als die Gleichungen einer gewöhnlichen Kreisevolvente dar. Falls $w \neq \rho$ gilt, stellen die Gleichungen (4.21) entweder eine verlängerte oder verkürzte Kreisevolvente dar.

Es ist somit festgestellt, dass falls $\sin \omega \neq 0$ bzw. $\left| \frac{2 \pi r (T - kT_1 \cos \alpha)}{kTT_1 \sin \alpha} \right| < 1$ gilt, das zu einem

Kreisevolventenprofil konjugierte Profil ebenfalls eine möglicherweise verlängerte oder verkürzte Kreisevolvente ist.

Es stellt sich die Frage, ob bei denselben Voraussetzungen die Klasse aller Kreisevolventen (sowohl gewöhnliche als auch verlängerte oder verkürzte) der Operation der Zuordnung eines konjugierten Profils gegenüber abgeschlossen ist. Diese Frage muss offen bleiben. Das ist vermutlich darauf zurückzuführen, dass der Aufbau von verlängerten bzw. verkürzten Kreisevolventen komplizierter als der einer gewöhnlichen Kreisevolvente sein kann. Wenn $\sin \omega = 0$, d.h.

$$\frac{2\pi r \left(T - k T_1 \cos \alpha\right)}{kT T_1 \sin \alpha} = \pm 1$$
(4.22)

gilt, wird (4.10) zu

$$\begin{cases} x(\phi) = \pm r \phi \\ y(\phi) = \pm r \\ z(\phi) = \frac{T}{2\pi} \left(\left(1 \pm \frac{1}{2} \right) \pi - \phi - \zeta_0 \right) \end{cases}$$
(4.23)

Das heißt, dass der geometrische Ort der eventuellen Berührungspunkte eine Gerade darstellt deren Abstand von der Ebene Oxz konstant und zwar dem Radius des Grundzylinders der Evolvente gleich ist. Für den An-

stieg dieser Geraden gilt $\pm \frac{T}{2 \pi r}$, was dem Anstieg der gegebenen Schraubenfläche auf dem der Evolvente

(4.2) entsprechenden Grundzylinder gleich ist. Die gegenseitige Anordnung der Geraden (4.23) und der Achse O_1z_1 ist von der Verschiebung der letzteren unabhängig. Deshalb sind natürlich auch die potentiellen Berührungspunkte von dieser Verschiebung unabhängig. Die Berührung der gegebenen Schraubenfläche mit der zu ermittelnden kann somit in allen Punkten der Geraden (4.23) stattfinden, insofern die Verzahnung durchdringungsfrei bleibt.

Aus (4.20) und (4.22) folgt zwangsläufig

$$-\sqrt{\frac{T_1^2}{4\pi^2}} + L^2 \left[\frac{2\pi r}{T}\sin(\alpha + \beta) + \cos(\alpha + \beta)\right] + \frac{2\pi r^2}{T} + r\cos\alpha = 0.$$
(4.24)

Die umgekehrte Behauptung gilt nicht, denn (4.24) hat (4.22) i. allg. nicht zur Folge.

Nochmals ist zu betonen, dass alles in diesem Kapitel dargelegte nur für den Fall einer Kreisevolvente als Ausgangsprofil gilt.

Löst man Gleichung (4.20) nach ϕ auf, so erhält man eine explizite Lösung des Problems der geometrischen Synthese einer Verzahnung im Falle einer Kreisevolvente als Ausgangsprofil. Obwohl dies die soeben durchgeführte theoretische Untersuchung ermöglicht, ist dieses Verfahren kaum für praktische Anwendungen empfehlenswert, da es nur für die betreffende Zahnflanke gilt.

Im Gegensatz dazu macht die Verwendung von Fourierentwicklungen das ganze Zahnrad gleichzeitig überschaubar. So können für jede zulässige gegenseitige Anordnung der mit den Zahnrädern verbundenen Koordinatensysteme alle eventuellen Berührungspunkte in einheitlicher Weise ermittelt werden, sowie die Verzahnung auf Durchdringungen überprüft werden. Das zeigt das im Kapitel 3 angeführte numerische Beispiel.

5. Anhang

Wir zeigen jetzt, wie für eine Punktmenge eine an diese Punktmenge angenäherte Kreisevolvente ermittelt werden kann, deren Grundkreis-Mittelpunkt mit dem Ursprung des Koordinatensystems übereinstimmt. Um das Verfahren zu erklären, wenden wir uns der Abbildung 4 zu, die einen Kreis mit einem Fragment seiner Evolvente darstellt.

Seien x und y die kartesischen Koordinaten des Punkts p und pa eine durch den Punkt p verlaufende Tangente an den betrachteten Kreis. pa stellt im Schnittpunkt q eine Normale an die Kreisevolvente dar. Daraus folgt $qa = r \cdot \delta$, wobei r der Radius des Grundkreises und δ der dem Punkt q entsprechende Wälzwinkel sind. Es gilt

$$pa = \sqrt{x^2 + y^2 - r^2}$$
. (5.1)

Hieraus ergibt sich, dass für die Abweichung des Punkts *p* von der Kreisevolvente die Gleichheit

$$pq = pa - qa = \sqrt{x^2 + y^2 - r^2 - r \cdot \delta}$$
 (5.2)

gilt.

Abbildung 4

Um die Formel (5.2) der Anwendung zugänglich zu machen, ist ein expliziter Ausdruck für die Größe des Wälzwinkels δ notwendig. Aus Abbildung 4 ist ersichtlich, dass, wenn der Grundkreis im Gegenuhrzeigersinn abgewickelt wird, die Formel

$$\delta = \arccos \frac{r}{\sqrt{x^2 + y^2}} + \arctan \frac{y}{x} - \gamma$$
(5.3 a)

gilt. Hier ist γ ein dem Anfangspunkt der Evolvente entsprechender Polarwinkel. Wird der Grundkreis im Uhrzeigersinn abgewickelt, gilt die Formel

$$\delta = \arccos \frac{r}{\sqrt{x^2 + y^2}} - \arctan \frac{y}{x} + \gamma.$$
(5.3 b)

Wir verfügen jetzt über den expliziten Ausdruck

$$pq = \sqrt{x^2 + y^2 - r^2} - \left(\arccos \frac{r}{\sqrt{x^2 + y^2}} \pm \arctan \frac{y}{x} \neq \gamma \right) r$$
(5.4)

für die Abweichung des Punkts p von der Kreisevolvente. Die oberen Vorzeichen gelten für den Fall der Abweicklung im Gegenuhrzeigersinn. Entsprechend gelten die unteren Vorzeichen für den Uhrzeigersinn. Nehmen wir an, dass in der Ebene Oxy n Punkte $p_i(x_i, y_i)$, i = 1...n gegeben sind. Bilden wir die Summe der Quadrate der Abweichungen dieser Punkte von der betrachteten Kreisevolvente, so entsteht der Ausdruck

$$S(r,\gamma) = \sum_{i=1}^{n} \left[\sqrt{x_i^2 + y_i^2 - r^2} - \left(\arccos \frac{r}{\sqrt{x_i^2 + y_i^2}} \pm \arctan \frac{y_i}{x_i} \neq \gamma \right) r \right]^2,$$
(5.5)

der als eine Funktion des Radius *r* des Grundkreises und des Winkels γ angesehen werden kann. Wir wollen die dem Tiefpunkt dieser Funktion entsprechenden Werte dieser zwei Veränderlichen ermitteln. Dafür benötigen wir die partiellen Ableitungen der Funktion $S(r, \gamma)$:

$$\frac{\partial S}{\partial \gamma} = \pm 2r \sum_{i=1}^{n} \left[\sqrt{x_i^2 + y_i^2 - r^2} - \left(\arccos \frac{r}{\sqrt{x_i^2 + y_i^2}} \pm \arctan \frac{y_i}{x_i} \neq \gamma \right) r \right],$$
(5.6 a)

$$\frac{\partial S}{\partial r} = -2\sum_{i=1}^{n} \left[\sqrt{x_i^2 + y_i^2 - r^2} - \left(\arccos \frac{r}{\sqrt{x_i^2 + y_i^2}} \pm \arctan \frac{y_i}{x_i} \neq \gamma \right) r \right] \times \left(\arccos \frac{r}{\sqrt{x_i^2 + y_i^2}} \pm \arctan \frac{y_i}{x_i} \neq \gamma \right).$$
(5.6 b)

Zu lösen ist das Gleichungssystem

$$\frac{\partial S}{\partial \gamma} = \frac{\partial S}{\partial \gamma} = 0.$$

Da $r \neq 0$ gelten soll, kann die Gleichung (5.6a) mit r gekürzt werden. Somit kann γ eliminiert werden:

$$\gamma = \mp \frac{\sum_{i=1}^{n} \left[\sqrt{x_i^2 + y_i^2 - r^2} - \left(\arccos \frac{r}{\sqrt{x_i^2 + y_i^2}} \pm \arctan \frac{y_i}{x_i} \right) r \right]}{nr}.$$
(5.7)

Substituiert man den rechten Teil der Formel (5.7) für γ in Gleichung $\frac{\partial S}{\partial r} = 0$, so erhält man eine Glei-

chung bezüglich *r*, die mittels eines beliebigen Näherungsverfahrens gelöst werden kann. Man beachte, dass bei der Substitution entweder nur die oberen (für Abwicklung im Gegenuhrzeigersinn) oder nur die unteren (für Abwicklung im Uhrzeigersinn) Vorzeichen verwendet werden. Nachdem *r*, ermittelt ist, erhält man aus (5.7) den Winkel γ .

6. Literaturverzeichnis

- [1] Isajs Kans-Kagans, Jürgen Zech: *Beitrag zur geometrischen Synthese von Verzahnungen.* Schriftenreihe der Georg-Simon-Ohm-Hochschule Nürnberg Nr. 46, Nürnberg 2010.
- [2] K.-H. Grote, J. Feldhusen: Dubbel Taschenbuch für den Maschinenbau, Springer 2007.
- [3] Gino Loria: Spezielle algebraische und transzendente ebene Kurven, Teubner 1911.
- [4] Frank Sperling: Über die analytische Behandlung des allgemeinen Verzahnungsproblems bei beliebiger Lage der Drehachsen. Dissertation, Berlin, 1959.
- [5] Ulrich Häussler: Generalisierte Berechnung räumlicher Verzahnungen und ihre Anwendung auf Wälzfräserherstellung und Wälzfräsen. Dissertation, Universität Stuttgart, 1999.
- [6] Faydor L. Litvin: Theory of Gearing, United States Government Printing, 1989.
- [7] David B. Dooner, Ali A. Seireg: The kinematic geometry of gearing, Wiley, 1995.
- [8] Gerhard Brandner: Räumliche Verzahnungen. Dissertation, Karl-Marx-Stadt, 1981.
- [9] A. Dyson: A general theory of the kinematics and geometry of gears in three dimensions, Clarendon Press, Oxford, 1969.
- [10] Wu Da-ren, Luo Jia-shun A geometric theory of conjugate tooth surfaces, World Scientific Singapore, 1992.
- [11] Karl-Heinz Hirschmann: Beitrag zur Berechnung der Geometrie von evolventen Verzahnungen. Dissertation, Stuttgart, 1977.
- [12] Ralf Steffens: Die Profilsteigungsfunktion ein neuer Weg zur analytischen Bestimmung und Optimierung allgemeiner Profilflankenpaarungen. Dissertation, Stuttgart, 1993.
- [13] Josef Hoschek: Zur Ermittlung von Hüllgebilden in der Kinematik. Dissertation, Darmstadt, 1964.
- [14] Jack Phillips General Spatial Involute Gearing, Springer, 2003.