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Abstract 
 
A magnetically levitated vehicle (MAGLEV) is sim-
plified by a single mass system on a rigid guideway. 
The equations of motion of the electromechanical 
components are derived with LAGRANGE-function 
in state space notation. Because of the instability of 
the electromagnetic levitation system the vehicle 
must be actively controlled. The controller is de-
signed by Linear Quadratic Control. An observer 
(KALMAN-Filter) is used to estimate the states 
which can not be measured or are influenced by 
noise. For the simulation of the controlled system 
the toolbox MATLAB is used. Simulation results for 
the time histories of the magnet gap and the accele-
ration are given for a gap initial condition. 
 
 
 
 
 
 
 
The research work was supported by the Education 
Committee and Science and Technology Committee 
of Shanghai Municipality, P.R.China. It was carried 
out during the time Prof. Dr. Reinhold Meisinger 
was visiting professor in Shanghai 2008 and Prof. 
Shu Guangwei, M.Sc. was visiting professor in 
Nuremberg 2009.  
 

ISSN 1867-5433 Sonderdruck Schriftenreihe der Georg-Simon-Ohm-Hochschule Nürnberg Nr. 44 



 



Observer-Controller Design and Simulation of a High-Speed MAGLEV Vehicle 
 
 
 
 

Schriftenreihe der Georg-Simon-Ohm-Hochschule Nürnberg 3 

1. Introduction 
 
The MAGLEV train is one of the most important technology innovations in Germany in the end of the last cen-
tury. It is the first train system which operates completely non-contact and without wheels [1, 7]. Because of the 
instability of the electro-magnetic levitation system the electromagnets must be actively controlled. The equa-
tions of motion are derived with LAGRANGE-function for a simplified single mass vehicle in state space nota-
tion [2, 5]. In engineering practice the vertical velocity of the vehicle cannot be measured by a sensor and the 
measurement of gap and acceleration are influenced by noise. So an observer is used to estimate it [2]. For the 
control system design a quadratic criterion is used. There the magnet gap, the vehicle vertical velocity and ac-
celeration are weighted (Linear Quadratic Control) [2, 3]. For the observer design it is assumed that the system 
input and the measurements are influenced by white GAUSSIAN noises (KALMAN-Filter). The computer simu-
lation of the active system is carried out with the toolbox MATLAB [6]. Simulation results of the direct state 
feedback and the use of an observer controller for the time histories of the magnet gap and the acceleration 
are given for a gap initial condition. 

 
2. Technical Model 
 
In Fig.1 the cross-section of the technical model of a MAGLEV vehicle without secondary suspension is shown. 
The electromagnets which generate attractive forces are fixed rigidly under the cabin. Because the vehicle is 
unstable, the magnet gap sM and the vertical acceleration Ms  are continuously measured by sensors and used 
as an input in the controller. The controller is computing the magnet voltage uM so that the vehicle is levitating. 
Note: The vertical velocity which is necessary for the control is estimated by an observer [1, 2]. 
 
 

 
 

 
Fig. 1: Technical model of MAGLEV vehicle 

 
 
3. Mathematical Model 

 

In Fig.2 the mathematical model of a single mass vehicle on a rigid guideway is shown. There mg is the vehicle 
weight (including the magnets), sM is the magnet gap, R is the resistance, L(sM) is the gap dependent induc-
tance, iM is the magnet current and uM is the magnet voltage. Stray flux as considered in [2] and eddy current 
effects will be neglected. 
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Fig. 2: Mathematical model of a single mass MAGLEV vehicle 

 
3.1 Nonlinear differential equations 

 

The equations of motion can be derived e.g. with LAGRANGE-function L, which is defined as difference be-
tween kinetic energy T and potential energy U of a dynamic system.  

VTL                                                                                                                         (1) 

Then the LAGRANGE equations of motion are [3] 
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where qr are the generalized coordinates and 
rq  are the generalized velocities who describe the system in the 

n-dimensional vector-space. Qr are the generalized forces who cannot derived from a potential. 
With the relative permeability of iron µr>>1 and the inductance constant  µ0   the inductance L(sM) of the magnet 
coil can be written as [4] 
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where A is the pole area and N is the number of windings. 
With the generalized coordinate Msq 1  and the generalized velocities 

Msq  1
, Miq 2  the kinetic energy T 

and the potential Energy U of the MAGLEV system are 

.

,
2

1
)(

2

1 22

M

MMM

sgmU

smisLT



 
                                                                                               (3) 

Then the LAGRANGE-function is obtained according eq. (1) to  
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The generalized force in eq. (2)  is RiuQ MM 2 . 

With eq. (2) and eq. (4) the nonlinear equations of motion are obtained as: 
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3.2 Linear differential equations 
 
The linearization is useful for the design of the Linear Quadratic Control (RICCATI-controller) and the design of 
the observer (KALMAN-Filter). For small deviations from steady-state we can write, cf. Fig.2 

,0 sSsM    ,0 iIiM    ,0 uUuM    ,00 S   .00 I  

Together with eq. (5) and the values in steady-state position 

),( 00 SLL    ,00 RIU   

the following linearized equations of motion are obtained: 
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with the magnet parameters  
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Eq. (6) can be transformed into 
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4. State Space Notation 
 
Together with eq. (7) and s , s  as measurements the following state equation and measurement equation are 
obtained [2]: 
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Eq. (8) has the form 
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with the state vector x, the scalar control input signal u, the measurement vector y, the system matrix A, the 
input matrix D, and the measurement matrix C. 
The control law for state feedback is  
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With the controller feedback matrix K eq. (9) has the form  

xK u  
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5. Controller Design 
 
To optimize the system the quadratic loss criterion  

 
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0
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2
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is used. There the diagonal matrix 

 21 QQdiagQ  

is weighting with Q1 the gap (safety) and with Q2 the acceleration (ride comfort). The scalar quantity R is 
weighting the input signal (control power) [2]. 
Then the controller feedback matrix K is obtained as  

PDK T 
R

1
,                                                                                                                   (11) 

where P is the steady-state solution of the matrix RICCATI equation 

.0 KDPCQCPAAP TT                                                                        (12) 

This equation can be solved e.g. numerically with MATLAB [6]. 
 
6. Observer Design 
 
Because in practice  the velocity s  can not be measured by a sensor and the gap and acceleration measure- 
ments s , s  are influenced by noise an estimation of the state vector x is performed by the following 3rd order 
observer (KALMAN-Filter): 

)ˆ(ˆˆ xCyLuDxAx                                                                                      (13) 

Eq. (13) is a model of the system eq. (8) and a feedback signal proportional to the difference between the ac-
tual measurement signal y  and the estimated measurement signal xC ˆ . It is assumed that the system input 
and the measurements are influenced by uncorrelated stochastic vector processes which are white GAUSSIAN 
noises 

w ~  GN ,0 ,   v ~  H,0N                                                                                        (14) 

with mean value zero. The scalar quantity G  is the power spectral density of the system input noise and the 
diagonal matrix 

 ],[ 21 HHdiagH  

describes with 1H , 2H  the power spectral densities of the gap and acceleration measurement noises. 
Then the observer feedback matrix L  is obtained as 

                                
1T HCΣL                                                                                                             (15) 

where   is the steady-state solution of the matrix RICCATI equation 

                    .ΣCLDGDAΣΣA TT 0                                                     (16) 

Because of the duality between Linear Quadratic Control and KALMAN-Filter, eq. (16) can be solved numeri-
cally similar to eq. (12) when the relations shown in table 1 are used. 
 

Linear Quadratic Control Observer (KALMAN-Filter) 
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Table 1: Duality between controller and observer 
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7. Simulation with MATLAB 
 
The system eq. (8) and the observer eq. (13) can be combined with the control law 

xK ˆu                                                                                                               (17) 

to the following matrix differential equation used for the simulation with MATLAB: 
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The block diagram shown in Fig. 3 demonstrates eq. (18). 
 

 
 

Fig. 3: System with observer-controller 
 
 
8. Simulation Results 
 
The system parameters in eq. (8) used for the simulation with MATLAB are resistance R = 4Ω, mNPs /106 , 

kgm 310 , 0L =1 Vs/A, ANPi /103 . 

The weightings in eq. (10) used for the control system design are ,106
1 Q  12 Q , weighting 410R .  

The power spectral densities in eq. (14) for the system input noise and the measurement noise are 1G , 
10

1 10H , 5
2 10H . 

In Fig.4 and Fig.5 the time histories of magnet gap deviation and vertical acceleration are presented with a gap 
initial condition s(0) = 2 mm for direct state feedback and the use of an observer-controller. 

 

9. Conclusions 
 
For a MAGLEV vehicle the equations of motion have been derived with LAGRANGE-Function and written in 
state space notation. It was possible to stabilize the system with the aid of Linear Quadratic Control and an ob-
server (KALMAN-Filter). The time histories of magnet gap deviation and vertical acceleration are presented 
with a gap initial condition. The results using an observer-controller compared with the results of a direct state 
feedback show that the MAGLEV vehicle can be also successfully stabilized with a state estimation carried out 
by an observer. 
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Fig. 4: Time histories of magnet gap with a gap initial condition s(0)=2mm 
 
 

 
 

Fig. 5: Time histories of acceleration with a gap initial condition s(0)=2mm 
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